• Title/Summary/Keyword: gate-channel capacitance

Search Result 61, Processing Time 0.026 seconds

The Extraction Method of LDD NMOSFET's Metallurgical Gate Channel Length (LDD NMOSFET의 Metallurgical 게이트 채널길이 추출 방법)

  • Jo, Myung-Suk
    • Journal of IKEEE
    • /
    • v.3 no.1 s.4
    • /
    • pp.118-125
    • /
    • 1999
  • A capacitance method to extract the metallurgical channel length of LDD MOSFET's, which is defined by the length between the metallurgical junction of substrate and source/drain under the gate, is presented. The gate capacitances of the finger type and plate type LDD MOSFET gate test patterns with same total gate area are measured. The gate bias of each pattern is changed, and the capacitances are measured with source, drain, and substrate bias grounded. The differences between two test pattern's capacitance data are plotted. The metallurgical channel length is extracted from the peak data at a maximum point using a simple formula. The numerical simulation using two-dimensional device simulator is performed to verify the proposed method.

  • PDF

Extracting the Effective Channel Length of MOSFET by Capacitance - Voltage Method. (Capacitance - Voltage 방법을 이용한 MOSFET의 유효 채널 길이 추출)

  • 김용구;지희환;박성형;이희덕
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.679-682
    • /
    • 2003
  • Improvement in MOS fabrication technology have led to high-density high-performance integrated circuits with MOSFET channel lengths in the sub-micron range. For devices of the size, transistor characteristics become highly sensitive to effective channel length. We propose a new approach to extract the effective channel length of MOSFET by Capacitance-Voltage (C-V) method. Gate-to-Source, Drain capacitance ( $C_{gsd}$) are measured and the effective channel length can be extracted. In addition, compared to l/$\beta$ method and Terada method, which has been point out that it fails to extract the accurate effective channel length of the devices, we prove that our approach still works well for the devices with down to sub-micron regime.e.

  • PDF

The Fabrication of a-Si:H TFT Improving Parasitic Capacitance of Source-Drain (소오스-드레인 기생용량을 개선한 박막트랜지스터 제조공정)

  • 허창우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.821-825
    • /
    • 2004
  • The a-Si:H TFTs decreasing parasitic capacitance of source-drain is fabricated on glass. The structure of a-Si:H TFTs is inverted staggered. The gate electrode is formed by patterning with length of 8 ${\mu}m∼16 ${\mu}m. and width of 80∼200 ${\mu}m after depositing with gate electrode (Cr) 1500 under coming 7059 glass substrate. We have fabricated a-SiN:H, conductor, etch-stopper and photoresistor on gate electrode in sequence, respectively. The thickness of these thin films is formed with a-SiN:H (2000 ), a-Si:H(2000 ) and n+a-Si:H (500). We have deposited n+a-Si:H ,NPR(Negative Photo Resister) layer after forming pattern of Cr gate electrode by etch-stopper pattern. The NPR layer by inverting pattern of upper gate electrode is patterned and the n+a-Si:H layer is etched by the NPR pattern. The NPR layer is removed. After Cr layer is deposited and patterned, the source-drain electrode is formed. The a-Si:H TFTs decreasing parasitic capacitance of source-drain has channel length of 8 ~20 ${\mu}m and channel width of 80∼200 ${\mu}m. And it shows drain current of 8 ${\mu}A at 20 gate voltages, Ion/Ioff ratio of 108 and Vth of 4 volts.

혼합된 PVP-PVA 유기 게이트 절연막이 유기 박막 트랜지스터의 전기적 특성에 미치는 영향에 대한 연구

  • Jo, Byeong-Geun;Kim, Gi-Jung;No, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.42-42
    • /
    • 2009
  • To make up for the disadvantages of PVA gate, we blend PVP(20% wt) with PVA(5% wt) as a gate material. The best ratio for the mixture was 5:5, PVP-PVA blended gate used MIM structure showed better performance in leakage current and capacitance. PVP-PVA blended gate was fabricated by spin-coating process and pentacene was used as an organic TFT channel layer by thermal evaporation. Overall OTFT performance has also increased as PVP-PVA blended gate has relatively lower leakage current and higher capacitance than pure PVA gate has.

  • PDF

Simulation of 4H-SiC MESFET for High Power and High Frequency Response

  • Chattopadhyay, S.N.;Pandey, P.;Overton, C.B.;Krishnamoorthy, S.;Leong, S.K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.251-263
    • /
    • 2008
  • In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.

The gate delay time and the design of VCO using variable MOS capacitance

  • Ryeo, Ji-Hwan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.99-102
    • /
    • 2005
  • In the paper, a proposed VCO based on bondwire inductances and nMOS varactors was implemented in a standard $0.25\;{\mu}m$ CMOS process. Using the new drain current model and a propagation delay time model equations, the operation speed of CMOS gate will predict the dependence on the load capacitance and the depth of oxide, threshold voltage, the supply voltage, the channel length. This paper describes the result of simulation which calculated a gate propagation delay time by using new drain current model and a propagation delay time model. At the result, When the reverse bias voltage on the substrate changes from 0 voltage to 3 voltage, the propagation delay time is appeared the delay from 0.8 nsec to 1 nsec. When the reverse voltage is biased on the substrate, for reducing the speed delay time, a supply voltage has to reduce. The $g_m$ value of MOSFET is calculated by using new drain current model.

  • PDF

AN ANALYTICAL DC MODEL FOR HEMTS (헴트 소자의 해석적 직류 모델)

  • Kim, Yeong-Min
    • ETRI Journal
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 1989
  • Based on the 2-dimensional charge-control simulation[4], a purely analytical model for MODFET's is proposed. In this model, proper treatment of the diffusion effect in the 2-DEG transport due to the gradual channel opening along the 2-DEG channel was made to explain the enhanced mobility and increased thershold voltage. The channel thickness and gate capacitance are experssed as functions of gate vlotage including subthreshold characteristics of the MODFET's analytically. By introducing the finite channel opening and an effective channel-length modulation, the slope of the saturation region of the I-V curves was modeled. The smooth transition of the I-V curves from linear-to-saturation region of the I-V curves was possible using the continuous Troffimenkoff-type of field-dependent mobility. Furthermore, a correction factor f was introduced to account for the finite transtition section forming between the GCA and the saturated section. This factor removes the large discrepanicies in the saturation region fo the I-V curves presicted by existing 1-dimensional models. The fitting parameters chosen in our model were found to be predictable and vary over relatively small range of values.

  • PDF

The Effect of Intrinsic Capacitances of MOSFET's on the Charge Redistribution in Dynamic Gates (MOSFET의 Intrinsie캐패시턴스가 도미노 논리회로에서의 전하 재분포에 미치는 영향)

  • 이병호;박성준;김원찬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1378-1385
    • /
    • 1990
  • In this paper we propose a model which can predict well the logical errors come from the charge redistribution in domino gates. In this model the effect of the intrinsic capacitance between gate and channel of MOSFET's is considered. This effect is more important than the parasitic capacitance effect. The error by the proposed model is only 8% of that by the currently used model. This model can be used as a guide-line in the design of domino circuits.

  • PDF

Analytical Characterization of a Dual-Material Double-Gate Fully-Depleted SOI MOSFET with Pearson-IV type Doping Distribution

  • Kushwaha, Alok;Pandey, Manoj K.;Pandey, Sujata;Gupta, Anil K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.110-119
    • /
    • 2007
  • A new two-dimensional analytical model for dual-material double-gate fully-depleted SOI MOSFET with Pearson-IV type Doping Distribution is presented. An investigation of electrical MOSFET parameters i.e. drain current, transconductance, channel resistance and device capacitance in DM DG FD SOI MOSFET is carried out with Pearson-IV type doping distribution as it is essential to establish proper profiles to get the optimum performance of the device. These parameters are categorically derived keeping view of potential at the center (${\phi}_c$) of the double gate SOI MOSFET as it is more sensitive than the potential at the surface (${\phi}_s$). The proposed structure is such that the work function of the gate material (both sides) near the source is higher than the one near the drain. This work demonstrates the benefits of high performance proposed structure over their single material gate counterparts. The results predicted by the model are compared with those obtained by 2D device simulator ATLAS to verify the accuracy of the proposed model.

A Self-Aligned Metal Gate MOSFET Structure Utilizing The Oxidation Rate Variation on The Impurity Concentration (불순물 농도에 따른 산화막 성장률의 차이를 이용한 자기 정렬된 금속게이트 MOSFET 구조)

  • 고요환;최진호;김충기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.7
    • /
    • pp.462-469
    • /
    • 1987
  • A metal gate MOSFET with source/drain regions self-aligned to gate region is proposed. The proposed MOS transistor is fabricated by utilizing the higher oxidation rate of source/drain regions with high doping concentration when compared with channel region with moderate doping. The thick oxide on the source/drain regions reduces the gate and drain(source) overlap capacitance down to that of a self-aligned polysilicon gate device while allowing the use of a metal gate with much lower resistivity than the more commonly used polycrystalline silicon. A ring oscillator composed of 15 inverter stages has been computer simulated using SPICE. The results of the simulation show good agreement with experimental measurement confirming the fast switching speed of propesed MOSFET.

  • PDF