• 제목/요약/키워드: gate driver circuits

검색결과 35건 처리시간 0.02초

Ultra-High Resolution and Large Size Organic Light Emitting Diode Panels with Highly Reliable Gate Driver Circuits

  • Hong Jae Shin
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.1-7
    • /
    • 2023
  • Large-size, organic light-emitting device (OLED) panels based on highly reliable gate driver circuits integrated using InGaZnO thin film transistors (TFTs) were developed to achieve ultra-high resolution TVs. These large-size OLED panels were driven by using a novel gate driver circuit not only for displaying images but also for sensing TFT characteristics for external compensation. Regardless of the negative threshold voltage of the TFTs, the proposed gate driver circuit in OLED panels functioned precisely, resulting from a decrease in the leakage current. The falling time of the circuit is approximately 0.9 ㎲, which is fast enough to drive 8K resolution OLED displays at 120 Hz. 120 Hz is most commonly used as the operating voltage because images consisting of 120 frames per second can be quickly shown on the display panel without any image sticking. The reliability tests showed that the lifetime of the proposed integrated gate driver is at least 100,000 h.

Array Testing of TFT-LCD Panel with Integrated Gate Driver Circuits

  • Lee, Jonghwan
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.68-72
    • /
    • 2020
  • A new method for array testing of TFT-CD panel with the integrated gate driver circuits is presented. As larger size/high resolution TFT-LCD with the peripheral driver circuits has emerged, one of the important problems for manufacturing is array testing on the panel. This paper describes the technology of detecting defective arrays and optimizing the array testing process. For the effective characterization of pixel array, the pixel storage capability is simulated and measured with voltage imaging system. This technology permits full functional testing during the manufacturing process, enabling fabrication of large TFT-LCD panels with the integrated driver circuits.

Multi-level PDP 구동회로를 위한 Gate driver의 Boot-strap chain에 관한 연구 (A Study on Gate driver with Boot-strap chain to Drive Multi-level PDP Driver Application)

  • 남원석;홍성수;사공석진;노정욱
    • 전력전자학회논문지
    • /
    • 제11권2호
    • /
    • pp.120-126
    • /
    • 2006
  • 본 논문에서는 Multi-level PDP 구동회로의 Sustain 스위치를 구동하기 위해 Boot-strap chain 방식의 Gate driver를 제안한다. 제안된 Gate driver는 한 개의 High-side N-MOSFETS를 구동하기 위해 별도의 Floating power supply 가 필요치 않고 한 쌍의 다이오드와 캐패시터만을 사용한다. 제안 Gate driver 회로를 적용함으로서, Multi-level PDP driver의 가격과 무게 및 부피를 줄일 수 있다.

태양광 분산형 최대전력점 추적 제어를 위한 고전압 게이트 드라이버 설계 (A Design of Gate Driver Circuits in DMPPT Control for Photovoltaic System)

  • 김민기;임신일
    • 한국산업정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.25-30
    • /
    • 2014
  • 본 논문에서는 태양광시스템의 분산형 최대 전력점 추적(DMPPT)을 제어하는 게이트 드라이버 회로를 설계하였다. 그림자가 생긴 모듈에서도 최대 전력점을 추적할 수 있는 분산형 방식(DMPPT) 방식을 구현 하였으며, 각각의 모듈 내부에 DC-DC 변환기를 구동하기 위한 고전압 게이트 구동회로를 설계하였다. 태양광 시스템의 내부는 12비트 ADC, PLL, 게이트 드라이버가 내장 되어 있다. 게이트 드라이버의 하이 사이드 레벨 쉬프터에 숏-펄스 발생기를 추가하여 전력소모와 소자가 받는 스트레스를 줄였다. BCDMOS 0.35um 공정을 사용하여 구현하였으며 최대 2A 전류를 감달 할 수 있고, 태양 광 전압 최대 50V까지 받을 수 있도록 설계하였다.

Multi-level을 사용한 PDP 구동회로를 위한 Gate driver 의 Boot-strap chain 에 관한 연구 (A study on gate driver with Boot-strap chain to drive Multi-level PDP driver application)

  • 남원석;김준형;송석호;노정욱;홍성수;사공석진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.99-101
    • /
    • 2005
  • A gate driver with Boot-strap chain is proposed to drive Multi-level PDP sustain switches. The proposed gate driver uses only one boot-strap capacitor and one diode per each MOSFETs switch without floating power supply. By adoption of this gate driver circuits, the size, weight and the cost of the drivel board can be reduced.

  • PDF

반도체 소자기반 펄스 전원용 게이트 구동 및 시험회로 설계 (Design of gate driver and test circuits for solid-state pulsed power modulator)

  • 공지웅;옥승복;안석호;장성록;류홍제
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.230-231
    • /
    • 2012
  • This paper describes a gate driver that operates numerous semiconductor switch in the solide-state pulsed power modulator. the proposed gate driver is designed to receive both the isolated drive-power and the on/off pulse signals through the transformer. Moreover, the IGBT-switch can be quickly turned off by adding protection circuit. Therefore it protects the IGBT-switch from the arc condition that frequently occurs in high-voltage pulse application. To comprehend operating characteristic of each IGBT-switch in pulse output condition, the device consisting of a high efficiency soft-switching capacitor charger and two series stacking IGBT-switch is developed. Finally, the relability of the proposed gate driver and the device for its test are proved through PSpice simulation and experiments.

  • PDF

Automotive High Side Switch Driver IC for Current Sensing Accuracy Improvement with Reverse Battery Protection

  • Park, Jaehyun;Park, Shihong
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1372-1381
    • /
    • 2017
  • This paper presents a high-side switch driver IC capable of improving the current sensing accuracy and providing reverse battery protection. Power semiconductor switches used to replace relay switches are encumbered by two disadvantages: they are prone to current sensing errors and they require additional external protection circuits for reverse battery protection. The proposed IC integrates a gate driver and current sensing blocks, thus compensating for these two disadvantages with a single IC. A p-sub-based 90-V $0.13-{\mu}m$ bipolar-CMOS-DMOS (BCD) process is used for the design and fabrication of the proposed IC. The current sensing accuracy (error ${\leq}{\pm}5%$ in the range of 0.1 A-6.5 A) and the reverse battery protection features of the proposed IC were experimentally tested and verified.

Ku-Band Power Amplifier MMIC Chipset with On-Chip Active Gate Bias Circuit

  • Noh, Youn-Sub;Chang, Dong-Pil;Yom, In-Bok
    • ETRI Journal
    • /
    • 제31권3호
    • /
    • pp.247-253
    • /
    • 2009
  • We propose a Ku-band driver and high-power amplifier monolithic microwave integrated circuits (MMICs) employing a compensating gate bias circuit using a commercial 0.5 ${\mu}m$ GaAs pHEMT technology. The integrated gate bias circuit provides compensation for the threshold voltage and temperature variations as well as independence of the supply voltage variations. A fabricated two-stage Ku-band driver amplifier MMIC exhibits a typical output power of 30.5 dBm and power-added efficiency (PAE) of 37% over a 13.5 GHz to 15.0 GHz frequency band, while a fabricated three-stage Ku-band high-power amplifier MMIC exhibits a maximum saturated output power of 39.25 dBm (8.4 W) and PAE of 22.7% at 14.5 GHz.

  • PDF

Design and Implementation of a New Multilevel DC-Link Three-phase Inverter

  • Masaoud, Ammar;Ping, Hew Wooi;Mekhilef, Saad;Taallah, Ayoub;Belkamel, Hamza
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.292-301
    • /
    • 2014
  • This paper presents a new configuration for a three-phase multilevel voltage source inverter. The main bridge is built from a classical three-phase two-level inverter and three bidirectional switches. A variable DC-link employing two unequal DC voltage supplies and four switches is connected to the main circuit in such a way that the proposed inverter produces four levels in the output voltage waveform. In order to obtain the desired switching gate signals, the fundamental frequency staircase modulation technique is successfully implemented. Furthermore, the proposed structure is extended and compared with other types of multilevel inverter topologies. The comparison shows that the proposed inverter requires a smaller number of power components. For a given number of voltage steps N, the proposed inverter requires N/2 DC voltage supplies and N+12 switches connected with N+7 gate driver circuits, while diode clamped or flying capacitor inverters require N-1 DC voltage supplies and 6(N-1) switches connected with 6(N-1) gate driver circuits. A prototype of the introduced configuration has been manufactured and the obtained simulation and experimental results ensure the feasibility of the proposed topology and the validity of the implemented modulation technique.

Single-Electron Logic Cells and SET/FET Hybrid Integrated Circuits

  • Kim, S.J.;Lee, C.K.;Lee, J.U.;Choi, S.J.;Hwang, J.H.;Lee, S.E.;Choi, J.B.;Park, K.S.;Lee, W.H.;Paik, I.B.;Kang, J.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권1호
    • /
    • pp.52-58
    • /
    • 2006
  • Single-electron transistor (SET)-based logic cells and SET/FET hybrid integrated circuits have been fabricated on SOI chips. The input-output voltage transfer characteristic of the SET-based complementary logic cell shows an inverting behavior where the output voltage gain is estimated to be about 1.2 at 4.2K. The SET/FET output driver, consisting of one SET and three FETs, yields a high voltage gain of 13 and power amplification with a wide-range output window for driving next circuit. Finally, the SET/FET literal gate for a multi-valued logic cell, comprising of an SET, an FET and a constant-current load, displays a periodic voltage output of high/low level multiple switching with a swing as high as 200mV. The multiple switching functionality of all the fabricated logic circuits could be enhanced by utilizing a side gate incorporated to each SET component to enable the phase control of Coulomb oscillations, which is one of the unique characteristics of the SET-based logic circuits.