• Title/Summary/Keyword: gate count

Search Result 173, Processing Time 0.03 seconds

Analysis on Proecwss Characteristics of 2'nd Silicidation Formation Process at MOS Structure (MOS 구조에서 실리사이드 형성단계의 공정특성 분석)

  • Eom, Gum-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.130-131
    • /
    • 2005
  • In the era of submicron devices, super ultra thin gate oxide characteristics are required. Titanium silicide process has studied gate oxide reliability and dielectric strength characteristics as the composition of gate electrode. In this study the author observed process characteristics on MOS structure. In view point of the process characteristics of MOS capacitor, the oxygen & Ti, Si2 was analyzed by SIMS analysis on before and after annealing with 1,2 step silicidation, the Ti contents[Count/sec]of $9.5{\times}1018$ & $6.5{\times}1018$ on before and after 2'nd anneal. The oxygen contents[Count/sec] of $4.3{\times}104$ & $3.65{\times}104$, the Si contents[Count/sec] of $4.2{\times}104$ & $3.7{\times}104$ on before and after 2'nd anneal. The rms value[A] was 4.98, & 4.03 on before and after 2'nd anneal.

  • PDF

Design and Implementation of the Manchester Encoder for RFID (RFID용 Manchester Encoder의 설계 및 구현)

  • Kim Ki-Ho;Kim Jae-Hyung;Park Hyung-Moo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.525-528
    • /
    • 2004
  • Manchester encoder of FSM method is a suitable signal coding for an RFID system. However, Manchester encoder of FSM method has usually more gate count and lower maximum frequency than encoder of exclusive-OR gate method. In this paper. it is proposed encoder of FSM method to improve gate count and maximum frequency.

  • PDF

SoC Emulation in Multiple FPGA using Bus Splitter

  • Wooseung Yang;Lee, Seung-Jong;Ando Ki;Kyung, Chong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.859-862
    • /
    • 2003
  • This paper proposes an emulation environment for SoC designs using small number of large gate-count FPGA's and a PC system. To overcome the pin limitation problem in partitioning the design when the design size overwhelms the FPGA gate count, we use bus splitter modules that replicate on-chip bus signals in one FPGA to arbitrary number of other FPGA's with minimal pin count. The proposed scheme is applied to the emulation of 2 million gate multimedia processing chip using two Xilinx Viretex-2 6000 FPGA devices in 6.6MHz operating frequency. An ARM core, memories, camera and LCD display are modeled in software using dual 2GHz Pentium-III processors. This scheme can be utilized for more than 2 FPGA's in the same ways as two FPGA case without losing emulation speed.

  • PDF

A Software/Hardware Codesign of the MLSE Equalizer for GSM/GPRS (GSM/GPRS용 MLSE 등화기의 소프트웨어/하드웨어 통합설계 구조제안)

  • 전영섭;박원흠;선우명훈;김경호
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.10
    • /
    • pp.11-20
    • /
    • 2002
  • This paper proposes a hardware/software codesign of the MLSE equalizer for GSM.GPRS systems. We analyze algorithms of the MLSE equalizer which consists of a channel estimator using the correlation method and the Viterbi processor. We estimate the computational complexity requirement based on the simulation of TI TMS320C5x DSP. We also estimate the gate count from the results of logic synthesis using the samsung 0.5㎛ standard cell library (STD80). Based on the results of the complexity estimation and gate count, we propose the efficient software/hardware codesign of the MLSE equalizer based on the results of the complexity estimation and gate count.

Ultradense 2-to-4 decoder in quantum-dot cellular automata technology based on MV32 gate

  • Abbasizadeh, Akram;Mosleh, Mohammad
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.912-921
    • /
    • 2020
  • Quantum-dot cellular automata (QCA) is an alternative complementary metal-oxide-semiconductor (CMOS) technology that is used to implement high-speed logical circuits at the atomic or molecular scale. In this study, an optimal 2-to-4 decoder in QCA is presented. The proposed QCA decoder is designed using a new formulation based on the MV32 gate. Notably, the MV32 gate has three inputs and two outputs, which is equivalent two 3-input majority gates, and operates based on cellular interactions. A multilayer design is suggested for the proposed decoder. Subsequently, a new and efficient 3-to-8 QCA decoder architecture is presented using the proposed 2-to-4 QCA decoder. The simulation results of the QCADesigner 2.0.3 software show that the proposed decoders perform well. Comparisons show that the proposed 2-to-4 QCA decoder is superior to the previously proposed ones in terms of cell count, occupied area, and delay.

Implementation of Rijndael Block Cipher Algorithm

  • Lee, Yun-Kyung;Park, Young-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.164-167
    • /
    • 2002
  • This paper presents the design of Rijndael crypto-processor with 128 bits, 192 bits and 256 bits key size. In October 2000 Rijndael cryptographic algorithm is selected as AES(Advanced Encryption Standard) by NIST(National Institute of Standards and Technology). Rijndael algorithm is strong in any known attacks. And it can be efficiently implemented in both hardware and software. We implement Rijndael algorithm in hardware, because hardware implementation gives more fast encryptioN/decryption speed and more physically secure. We implemented Rijndael algorithm for 128 bits, 192 bits and 256 bits key size with VHDL, synthesized with Synopsys, and simulated with ModelSim. This crypto-processor is implemented using on-the-fly key generation method and using lookup table for S-box/SI-box. And the order of Inverse Shift Row operation and Inverse Substitution operation is exchanged in decryption round operation of Rijndael algorithm. It brings about decrease of the total gate count. Crypto-processor implemented in these methods is applied to mobile systems and smart cards, because it has moderate gate count and high speed.

  • PDF

A Level Dependent Source Concoction Multilevel Inverter Topology with a Reduced Number of Power Switches

  • Edwin Jose, S.;Titus, S.
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1316-1323
    • /
    • 2016
  • Multilevel inverters (MLIs) have been preferred over conventional two-level inverters due to their inherent properties such as reduced harmonic distortion, lower electromagnetic interference, minimal common mode voltage, ability to synthesize medium/high voltage from low voltage sources, etc. On the other hand, they suffer from an increased number of switching devices, complex gate pulse generation, etc. This paper develops an ingenious symmetrical MLI topology, which consumes lesser component count. The proposed level dependent sources concoction multilevel inverter (LDSCMLI) is basically a multilevel dc link MLI (MLDCMLI), which first synthesizes a stepped dc link voltage using a sources concoction module and then realizes the ac waveform through a conventional H-bridge. Seven level and eleven level versions of the proposed topology are simulated in MATLAB r2010b and prototypes are constructed to validate the performance. The proposed topology requires lesser components compared to recent component reduced MLI topologies and the classical topologies. In addition, it requires fewer carrier signals and gate driver circuits.

A Low Power Design of H.264 Codec Based on Hardware and Software Co-design

  • Park, Seong-Mo;Lee, Suk-Ho;Shin, Kyoung-Seon;Lee, Jae-Jin;Chung, Moo-Kyoung;Lee, Jun-Young;Eum, Nak-Woong
    • Information and Communications Magazine
    • /
    • v.25 no.12
    • /
    • pp.10-18
    • /
    • 2008
  • In this paper, we present a low-power design of H.264 codec based on dedicated hardware and software solution on EMP(ETRI Multi-core platform). The dedicated hardware scheme has reducing computation using motion estimation skip and reducing memory access for motion estimation. The design reduces data transfer load to 66% compared to conventional method. The gate count of H.264 encoder and the performance is about 455k and 43Mhz@30fps with D1(720x480) for H.264 encoder. The software solution is with ASIP(Application Specific Instruction Processor) that it is SIMD(Single Instruction Multiple Data), Dual Issue VLIW(Very Long Instruction Word) core, specified register file for SIMD, internal memory and data memory access for memory controller, 6 step pipeline, and 32 bits bus width. Performance and gate count is 400MHz@30fps with CIF(Common Intermediated format) and about 100k per core for H.264 decoder.

A Performance-Oriented Intra-Prediction Hardware Design for H.264/AVC

  • Jin, Xianzhe;Ryoo, Kwangki
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • In this paper, we propose a parallel intra-operation unit and a memory architecture for improving the performance of intra-prediction, which utilizes spatial correlation in an image to predict the blocks and contains 17 prediction modes in total. The design is targeted for portable devices applying H.264/AVC decoders. For boosting the performance of the proposed design, we adopt a parallel intra-operation unit that can achieve the prediction of 16 neighboring pixels at the same time. In the best case, it can achieve the computation of one luma $16{\times}16$ block within 16 cycles. For one luma $4{\times}4$ block, a mere one cycle is needed to finish the process of computation. Compared with the previous designs, the average cycle reduction rate is 78.01%, and the gate count is slightly reduced. The design is synthesized with the MagnaChip $0.18{mu}m$ library and can run at 125 MHz.

Design of a RS(23,17) Reed-Solomon Decoder (RS(23,17) 리드-솔로몬 복호기 설계)

  • Kang, Sung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2286-2292
    • /
    • 2008
  • In this paper, we design a RS(23,17) decoder for MB-OFDM(Multiband-Orthogonal Frequency Division Multiplexing) system, in which Modified Euclidean(ME) algorithm is adopted for key equation solver block. The proposed decoder has been optimized for MB-OFDM system so that it has less latency and hardware complexity. Additionally, we have implemented the proposed decoder using Verilog HDL and synthesized with Samsung 65nm library. From synthesis results, it can operate at clock frequency of 250MHz, and gate count is 20,710.