• Title/Summary/Keyword: gate Leakage Current

Search Result 334, Processing Time 0.037 seconds

Measurement of Interface Trapped Charge Densities $(D_{it})$ in 6H-SiC MOS Capacitors

  • Lee Jang Hee;Na Keeyeol;Kim Kwang-Ho;Lee Hyung Gyoo;Kim Yeong-Seuk
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.343-347
    • /
    • 2004
  • High oxidation temperature of SiC shows a tendency of carbide formation at the interface which results in poor MOSFET transfer characteristics. Thus we developed oxidation processes in order to get low interface charge densities. N-type 6H-SiC MOS capacitors were fabricated by different oxidation processes: dry, wet, and dry­reoxidation. Gate oxidation and Ar anneal temperature was $1150^{\circ}C.$ Ar annealing was performed after gate oxidation for 30 minutes. Dry-reoxidation condition was $950^{\circ}C,$ H2O ambient for 2 hours. Gate oxide thickness of dry, wet and dry-reoxidation samples were 38.0 nm, 38.7 nm, 38.5 nm, respectively. Mo was adopted for gate electrode. To investigate quality of these gate oxide films, high frequency C- V measurement, gate oxide leakage current, and interface trapped charge densities (Dit) were measured. The interface trapped charge densities (Dit) measured by conductance method was about $4\times10^{10}[cm^{-1}eV^{-1}]$ for dry and wet oxidation, the lowest ever reported, and $1\times10^{11}[cm^{-1}eV^{-1}]$ for dry-reoxidation

  • PDF

Electrical Properties of MOS Capacitors and Transistors with in-situ doped Amorphous Si Gate (증착시 도핑된 비정질 Si 게이트를 갖는 MOS 캐패시터와 트랜지스터의 전기적 특성)

  • 이상돈;이현창;김재성;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.107-116
    • /
    • 1994
  • In this paper, The electrical properties of MOS capacitors and transistoras with gate of in-situ doped amorphous Si and poly Si doped by POCI$_3$. Under constant current F-N stress, MOS capacitors with in-situ doped amorphous Si gate have shown the best resistance to degradation in reliabilty properties such as increase of leakage current, shift of gate voltage (V$_{g}$). shift of flat band voltage (V$_{fb}$) and charge to breakdown(Q$_{bd}$). Also, MOSFETs with in-situ doped amorphous Si gate have shown to have less degradation in transistor properties such as threshold voltage, transconductance and drain current. These improvements observed in MOS devices with in-situ doped amorphous Si gate is attributed to less local thinning spots at the gate/SiO$_2$ interface, caused by the large grain size and the smoothness of the surface at the gate/SiO$_2$ interface.

  • PDF

Atomic Layer Deposition of ZrSiO4 and HfSiO4 Thin Films using a newly designed DNS-Zr and DNS-Hf bimetallic precursors for high-performance logic devices (DNS-Zr과 DNS-Hf 바이메탈 전구체를 이용한 Gate Dielectric용 ZrSiO4 및 HfSiO4 원자층 증착법에 관한 연구)

  • Kim, Da-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.138-138
    • /
    • 2017
  • 차세대 CMOS 소자의 지속적인 고직접화를 위해서는 높은 gate capacitance와 낮은 gate leakage current를 확보를 위한, 적절한 metal gate electrode와 high-k dielectric 물질의 개발이 필수적으로 요구된다. 특히, gate dielectric으로 적용하기 위한 다양한 high-k dielectric 물질 후보군 중에서, 높은 dielectric constant와, 낮은 leakage current, 그리고 Si과의 우수한 열적 안정성을 가지는 Zr silicates 또는 Hf silicates(ZrSiO4와 HfSiO4) 물질이 높은 관심을 받고 있으며, 이를 원자층 증착법을 통해 구현하기 위한 노력들이 있어왔다. 그러나, 현재까지 보고된 원자층 증착법을 이용한 Zr silicates 및 Hf silicates 공정의 경우, 개별적인 Zr(또는 Hf)과 Si precursor를 이용하여 ZrO2(또는 HfO2)과 SiO2를 반복적으로 증착하는 방식으로 Zr silicates 또는 Hf silicates를 형성하고 있어, 전체 공정이 매우 복잡해지는 문제점 뿐 아니라, gate dielectric 내에서 Zr과 Si의 국부적인 조성 불균일성을 야기하여, 제작된 소자의 신뢰성을 떨어뜨리는 문제점을 나타내왔다. 따라서, 본 연구에서는 이러한 문제점을 개선하기 위하여, 하나의 precursor에 Zr (또는 Hf)과 Si 원소를 동시에 가지고 있는 DNS-Zr과 DNS-Hf bimetallic precursor를 이용하여 새로운 ZrSiO4와 HfSiO4 ALD 공정을 개발하고, 그 특성을 살펴보고자 하였다. H2O와 O3을 reactant로 사용한 원자층 증착법 공정을 통하여, Zr:Si 또는 Hf:Si의 화학양론적 비율이 항상 일정한 ZrSiO4와 HfSiO4 박막을 형성할 수 있었으며, 이들의 전기적 특성 평가를 진행하였으며, dielectric constant 및 leakage current 측면에서 우수한 특성을 나타냄을 확인할 수 있었다. 이러한 결과를 바탕으로, bimetallic 전구체를 이용한 ALD 공정은 차세대 고성능 논리회로의 게이트 유전물질에 응용이 가능할 것으로 판단된다.

  • PDF

The Electrical Properties of Gate Oxide due to the Variation of Thickness (두께 변화에 따른 Gate Oxide의 전기적 특성)

  • Park, Jung-Goo;Hong, Nung-Pyo;Lee, Yong-Woo;Kim, Wang-Gon;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1931-1933
    • /
    • 1999
  • In this paper, the current and voltage properties on the gate oxide film due to the variation of thickness are studied. The specimen is used for n-ch power MOSFET. It is shows the leakage current and current density characteristics due to the applied electric field when the oxide thickness is each $600[\AA],\;800[\AA]$ and $1000[\AA]$, respectively. We known that the leakage current is a little higher when the voltage as reverse bias contrast with forward bias in poly gate is applied. In order to experiment for AC properties is measured for capacitance characteristics. It is confirmed that the value of input capacitance have been a lot of influenced on $SiO_2$ thickness contrast with the value of output capacitance.

  • PDF

Study on DC Characteristics of 4H-SiC Recessed-Gate MESFETs (Recessed-gate 4H-SiC MESFET의 DC특성에 관한 연구)

  • Park, Seung-Wook;Hwang, Ung-Jun;Shin, Moo-Whan
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • DC characteristics of recessed gate 4H-SiC MESFET were investigated using the device/circuit simulation tool, PISCES. Results of theoretical calculation were compared with the experimental data for the extraction of modeling parameters which were implemented for the prediction of DC and gate leakage characteristics at high temperatures. The current-voltage analysis using a fixed mobility model revealed that the short channel effect is influenced by the defects in SiC. The incomplete ionization models are found out significant physical models for an accurate prediction of SiC device performance. Gate leakage is shown to increase with the device operation temperatures and to decrease with the Schottky barrier height of gate metal.

A Study on Modeling of Leakage Current in ESS Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 ESS의 누설전류 모델링에 관한 연구)

  • Kim, Ji-Myung;Tae, Dong-Hyun;Lee, Il-Moo;Lim, Geon-Pyo;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.810-818
    • /
    • 2021
  • A leakage current of ESS is classified mainly by the occurrence from a PCS(Power Conditioning System) section and an unbalanced grid current. The reason for the leakage current from the PCS section is a voltage change by IGBT (Insulated Gate Bipolar Transistor) switching and stray capacitance between the IGBT and heatsink. The leakage current caused by the grid unbalanced current flows to the ESS through the neutral line of grid-connected transformer for the ESS with a three limb iron type of Yg-wire connection. This paper proposes a mechanism for the occurrence of leakage current caused by stray capacitance, which is calculated using the heatsink formula, from the aspect of the PCS section and grid unbalance current. Based on the proposed mechanisms, this study presents the modeling of the leakage current occurrence using PSCAD/EMTDC S/W and evaluates the characteristics of leakage currents from the PCS section and grid unbalanced current. From the simulation result, the leakage current has a large influence on the battery side by confirming that the leakage current from the PCS is increased from 7[mA] to 34[mA], and the leakage current from an unbalanced load to battery housing is increased from 3.96[mA] to 10.76[mA] according to the resistance of the housings and the magnitude of the ground resistance.

Analysis of a Novel Elevated Source Drain MOSFET with Reduced Gate-Induced Drain Leakage and High Driving Capability (Gate-Induced Drain Leakage를 줄인 새로운 구조의 고성능 Elevated Source Drain MOSFET에 관한 분석)

  • Kim, Gyeong-Hwan;Choe, Chang-Sun;Kim, Jeong-Tae;Choe, U-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.6
    • /
    • pp.390-397
    • /
    • 2001
  • A novel self-aligned ESD (Elevated Source Drain) MOSFET structure which can effectively reduce the GIDL (Gate-Induced Drain Leakage) current is proposed and analyzed. The proposed ESD structure is characterized by sidewall spacer and recessed-channel depth which are determined by dry-etching process. Elevation of the Source/Drain extension region is realized so that the low-activation effect caused by low-energy ion implantation can be avoided. Unlike the conventional LDD structures, it is shown that the GIDL current of the ESD structure is suppressed without sacrificing the maximum driving capability. The main reason for the reduction of GIDL current Is the decreased electric field at the point of the maximum band-to-band tunneling as the peak electric field is shifted toward the drain side.

  • PDF

Hot-Carrier Induced GIDL Characteristics of PMOSFETs under DC and Dynamic Stress (직류 및 교류스트레스 조건에서 발생된 Hot-Carrier가 PMOSFET의 누설전류에 미치는 영향)

  • 류동렬;이상돈;박종태;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.77-87
    • /
    • 1993
  • PMOSFETs were studied on the effect of Hot-Carrier induced drain leakage current (Gate-Induced-Drain-Leakage). The result turned out that change in Vgl(drain voltage where 1pA/$\mu$m of drain leadage current flows) was largest in the Channel-Hot-Hole(CHH) injection condition and next was in dynamic stress and was smallest in electron trapping (Igmax) condition under various stress conditions. It was analyzed that if electron trapping occurrs in the overlap region of gate and drain(G/D), it reduces GIDL current due to increment of flat-band voltage(Vfb) and if CHH is injected, interface states(Nit) were generated and it increases GIDL current due to band-to-defect-tunneling(BTDT). Especially, under dynamic stress it was confirmed that increase in GIDL current will be high when electron injection was small and CHH injection was large. Therefore as applying to real circuit, low drain voltage GIDL(BTDT) was enhaced as large as CHH Region under various operating voltage, and it will affect the reliablity of the circuit.

  • PDF

High-Voltage AlGaN/GaN High-Electron-Mobility Transistors Using Thermal Oxidation for NiOx Passivation

  • Kim, Minki;Seok, Ogyun;Han, Min-Koo;Ha, Min-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1157-1162
    • /
    • 2013
  • We proposed AlGaN/GaN high-electron-mobility transistors (HEMTs) using thermal oxidation for NiOx passivation. Auger electron spectroscopy, secondary ion mass spectroscopy, and pulsed I-V were used to study oxidation features. The oxidation process diffused Ni and O into the AlGaN barrier and formed NiOx on the surface. The breakdown voltage of the proposed device was 1520 V while that of the conventional device was 300 V. The gate leakage current of the proposed device was 3.5 ${\mu}A/mm$ and that of the conventional device was 1116.7 ${\mu}A/mm$. The conventional device exhibited similar current in the gate-and-drain-pulsed I-V and its drain-pulsed counterpart. The gate-and-drain-pulsed current of the proposed device was about 56 % of the drain-pulsed current. This indicated that the oxidation process may form deep states having a low emission current, which then suppresses the leakage current. Our results suggest that the proposed process is suitable for achieving high breakdown voltages in the GaN-based devices.

Characteristics of the Novel Gate Insulator Structured Poly-Si TFT's (새로운 게이트 절연막 구조를 가지는 다결정 실리콘 박막 트랜지스터)

  • Hwang, Han-Wook;Choi, Yong-Won;Kim, Yong-Sang;Kim, Han-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1965-1967
    • /
    • 1999
  • We have investigated the electrical characteristics of the poly-Si TFT's with the novel gate insulator structure. The gate insulator makes the offset region to reduce leakage current, and the electrical characteristics are obtained by employing Virtual Wafer Fab. simulator. As increases the gate insulator thickness above the offset region of this structure from $0{\AA}$ to $2000{\AA}$, the OFF state current at $V_G$=10V decrease by two orders in magnitude while ON state current doesn't decrease significantly. ON/OFF current ratios for conventional device and the proposed device with $2000{\AA}$ gate insulator thickness are $1.68{\times}10^5$ and $1.07{\times}10^7$, respectively.

  • PDF