• Title/Summary/Keyword: fuzzy relationship

Search Result 270, Processing Time 0.03 seconds

ON UPPER AND LOWER SEMI-IRRESOLUTE FUZZY MULTIFUNCTIONS

  • Seenivasan, V.;Balasubramanian, G.
    • East Asian mathematical journal
    • /
    • v.23 no.1
    • /
    • pp.9-22
    • /
    • 2007
  • New classes of multifunctions called fuzzy upper and fuzzy lower semi-irresolute (semi-continuous) multifunctions in fuzzy topological spaces are introduced in this paper. We also obtain some characterizations of this class and some basic interesting properties of such fuzzy multifunctions. We discuss mutual relationship and also relationship with other existing such multifunctions.

  • PDF

Research on the weld quality estimation system using fuzzy expert system (퍼지 전문가 시스템을 활용한 용접 품질 예측 시스템에 관한 연구)

  • 박주용;강병윤;박현철
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.36-43
    • /
    • 1997
  • Weld bead shape is an important measure for evaluation of weld quality. Many welding parameters have influence on the weld bead shape. The quantitative relationship between welding parameters and bead shape, however, is not determined yet because of their high complexity and many unknown factors. Fuzzy expert system is an advanced expert system which uses fuzzy rules and approximate reasoning. It is a vert useful tool for welding technology because is can process rationally the uncertain and inexact information such as the welding information. In this paper, the empirical and the qualitative relationship between welding parameters and bead shape are analyzed and represented by fuzzy rules. They are converted to the quantitative relationship by use of approximate reasoning of fuzzy expert system. Weld bead shape is estimated from the welding parameters using fuzzy expert system. The result of comparison between measured values of weld bead by welding experiments and the estimates values by fuzzy expert system shows a good consistancy.

  • PDF

Optimization of tube hydroforming process by using fuzzy expert system (퍼지 전문가 시스템을 이용한 강관 하이드로포밍의 성형성 예측에 관한 연구)

  • Park K. S.;Kim D. K.;Lee D. H.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.194-197
    • /
    • 2004
  • In the tube hydroforming process, a tube is placed into the die cavity and the ends of the tube are sealed by fixing the axial cylinder piston into the ends. Then the tube is pressurized with a hydraulic fluid and simultaneously the axial cylinders move to feed the material into the expansion zone. Therefore, the quantitative relationship between process parameters such as internal pressure and feeding amount and hydroformabillity, is hard to establish because of their high complexity and many unknown factors. In this study, the empirical and the quantitative relationship between process parameters and hydroformabillity are analyzed by fuzzy rules. Fuzzy expert system is an advanced expert system which uses fuzzy rule and approximate reasoning. Many process parameters are converted to the quantitative relationship by use of approximate reasoning of fuzzy expert system. The comparison between experimentally measured hydroformabillity from hydroforming experiments and the predicted values by fuzzy expert system shows a good agreement.

  • PDF

ON FUZZY ${T_2}$-AXIOMS

  • Cho, Sung-Ki
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.393-403
    • /
    • 1999
  • Some fuzzy T\ulcorner-axioms are characterized in terms of the notion of fuzzy closure and the relationship between those fuzzy T\ulcorner-axioms are obtained. Also, finite fuzzy topological spaces satisfying one of those axioms are studied.

  • PDF

Multiple Linear Goal Programming Using Scenario Approach to Obtain Fuzzy Solution

  • Namatame, Takashi;Yamaguchi, Toshikazu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.512-516
    • /
    • 1998
  • Fuzzy mathematical programming (FMP) can be treated an uncertainty condition using fuzzy concept. Further, it can be extended to the multiple objective (or goal) programming problem, naturally. But we feel that FMP have some shortcomings such as the fuzzy number in FMP is the one dimesional possibility set, so it can not be represented the relationship between them, and, in spite of FMP includes some (uncertainty) fuzzy paramenters, many alogrithms are only obtained a crisp solution.In this study, we propose a method of FMS. Our method use the scenario approach (or fuzzy random variables) to represent the relationship between fuzzy numbers, and can obtain the fuzzy solution.

  • PDF

Intuitionistic Fuzzy Topology and Intuitionistic Fuzzy Preorder

  • Yun, Sang Min;Lee, Seok Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.79-86
    • /
    • 2015
  • This paper is devoted to finding relationship between intuitionistic fuzzy preorders and intuitionistic fuzzy topologies. For any intuitionistic fuzzy preordered space, an intuitionistic fuzzy topology will be constructed. Conversely, for any intuitionistic fuzzy topological space, we obtain an intuitionistic fuzzy preorder on the set. Moreover, we will show that the family of all intuitionistic fuzzy preorders on an underlying set has a very close link to the family of all intuitionistic fuzzy topologies on the set satisfying some extra condition.

A parameter tuning method in fuzzy control systems (퍼지제어 시스템에서의 파라미터 동조방법)

  • 최종수;김성중;권오신
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.479-483
    • /
    • 1992
  • This paper defines the relationship between PI type fuzzy control system and conventional PI control system, and discusses the relationship of parameters and control action in fuzzy controller. The tuning algorithm that updates ouput variable scaling factor of fuzzy controller is proposed .The proposed sheme is applied to the simulations of 2 selected dynamical plants. The simulation results show that the controller is effective in controlling dynamical plants.

  • PDF

A Note on Relationship between T-sum and T-product on LR Fuzzy Numbers

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1141-1145
    • /
    • 2005
  • In this note, we show that Theorem 2.1[Kybernetika, 28(1992) 45-49], a result of a functional relationship between the membership function of LR fuzzy numbers of T-sum and T-product, remains valid for convex additive generator and concave shape functions L and R with simple proof. We also consider the case for 0-symmetric R fuzzy numbers.

  • PDF

Relationship Among h Value, Membership Function, and Spread in Fuzzy Linear Regression using Shape-preserving Operations

  • Hong, Dug-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.306-311
    • /
    • 2008
  • Fuzzy regression, a nonparametric method, can be quite useful in estimating the relationships among variables where the available data are very limited and imprecise. It can also serve as a sound methodology that can be applied to a variety of management and engineering problems where variables are interacting in an uncertain, qualitative, and fuzzy way. A close examination of the fuzzy regression algorithm reveals that the resulting possibility distribution of fuzzy parameters, which makes this technique attractive in a fuzzy environment, is dependent upon an h parameter value. The h value, which is between 0 and 1, is referred to as the degree of fit of the estimated fuzzy linear model to the given data, and is subjectively selected by a decision maker (DM) as an input to the model. The selection of a proper value of h is important in fuzzy regression, because it determines the range of the posibility ditributions of the fuzzy parameters. In this paper, we discuss the interdependent relationship among the h value, membership function shape, and the spreads of fuzzy parameters in fuzzy linear regression with fuzzy input-output using shape-preserving operations.