A Note on Relationship between $T^{\text {-sum }}$ and T^{-}-product on $L R$ Fuzzy Numbers

Dug Hun Hong1) • Kyung Tae Kim²

Abstract

In this note, we show that Theorem 2.1[Kybernetika, 28(1992) 45-49], a result of a functional relationship between the membership function of $L R$ fuzzy numbers of T-sum and T-product, remains valid for convex additive generator and concave shape functions L and R with simple proof. We also consider the case for 0 -symmetric R fuzzy numbers.

Keywords : Extension principle, Fuzzy numbers, t norm

1. Preliminaries

As defined in [1], by a fuzzy number we mean a fuzzy subset ξ of the real line with a continuous, compactly supported, unimodal membership function such that there exists a unique real number m satisfying $\xi(m)=\sup _{x} \xi(x)=1$. A fuzzy set ξ is said to be positive if $\xi=0$ for all $x<0$. A function $T:[0,1] \times[0,1] \rightarrow[0,1]$ is said to be a triangular norm (t-norm for short) if and only if T is symmetric, associative, non-decreasing in each argument, and $T(x, 1)=x$ for all $x \in[0,1]$. Now suppose that a sequence of fuzzy numbers $\xi_{1}, \xi_{2}, \cdots, \xi_{n}, \cdots$ and a t norm T are given. The T-product $\xi_{1} \cdots \xi_{n}$ and the $T^{\text {-sum }} \xi_{1}+\cdots+\xi_{n}$ are the fuzzy numbers defined by

[^0]$$
\left(\xi_{1} \cdots \xi_{n}\right)(z):=\sup _{x_{1} \cdots x_{n}=z} T\left(\xi_{1}\left(x_{1}\right), \cdots, \xi_{n}\left(x_{n}\right)\right)
$$
and
$$
\left(\xi_{1}+\cdots+\xi_{n}\right)(z):=\sup _{x_{1}+\cdots+x_{n}=z} T\left(\xi_{1}\left(x_{1}\right), \cdots, \xi_{n}\left(x_{n}\right)\right)
$$
respectively.

Recall that a t norm T is called Archimedian if and only if T is continuous and $T(x, x)<x$ for all $x \in(0,1)$. A well-known theorem asserts that for each Archimedian t-norm there exists a continuous, decreasing function $f:[0,1] \rightarrow[0, \infty]$ with $f(1)=0$ such that

$$
T\left(x_{1}, \cdots, x_{n}\right)=f^{[-1]}\left(f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right)
$$

for all $x_{i} \in(0,1), 1 \leq i \leq n$. Here $f^{[-1]}:[0, \infty] \rightarrow[0,1]$ is defined by

$$
f^{[-1]}(y)= \begin{cases}f^{-1}(y) & \text { for } \quad y \in[0, f(0)] \\ 0 & \text { if } \quad y>f(0)\end{cases}
$$

The function f is called the additive generator of T. Since f is continuous and decreasing, $f^{[-1]}$ is also continuous and non--increasing, we have

$$
\begin{align*}
\left(\xi_{1} \cdots \xi_{n}\right)(z) & =\sup _{x_{1} \cdots x_{n}=z} f^{[-1]}\left(\sum_{i=1}^{n} f\left(\xi_{i}\left(x_{i}\right)\right)\right) \tag{1}\\
& =f^{[-1]}\left(\inf _{x_{1} \cdots x_{n}=z}\left(\sum_{i=1}^{n} f\left(\xi_{i}\left(x_{i}\right)\right)\right)\right) .
\end{align*}
$$

An $L R$ fuzzy number $\tilde{a}=(a, \alpha, \beta)_{L R}$ is a function from the reals into the interval $[0,1]$ satisfying

$$
\tilde{a}(t)=\left\{\begin{array}{lll}
R\left(\frac{t-a}{\beta}\right) & \text { for } \quad a \leq t \leq a+\beta \\
L\left(\frac{a-t}{\alpha}\right) & \text { for } & a-\alpha \leq t \leq a \\
0 & \text { else }
\end{array}\right.
$$

where L and R are strictly decreasing, continuous function from $[0,1]$ to [0,1] satisfying $L(0)=R(0)=1$ and $L(1)=R(1)=0$. In particular, if $\alpha=0$,

$$
\text { A Note on Relationship between } T^{-} \text {sum and } T^{-} \text {product }
$$

then $\tilde{a}=(a, 0, \beta)_{L R}=(a, \beta)_{R}$ is R fuzzy number. A fuzzy number \tilde{a} is called positive if its membership function is such that $\tilde{a}(t)=0$ for any $t<0$.

The following theorem(Fullér and Keresztfalvi [4]) gave a functional relationship between the membership function of T^{-}sum and T^{-}product of $L R$ fuzzy numbers.

Theorem 1[4]. Let T be an Archimedian t-norm with additive generator f and let $\xi=\xi_{i}=(a, \alpha, \beta)_{L R}$ be positive fuzzy numbers of $L R$ type. If L and R are twice differentiable, concave functions and f is twice differentiable, strictly convex function, then

$$
\left(\xi_{1}+\cdots+\xi_{n}\right)(n z)=\left(\xi_{1} \cdots \xi_{n}\right)\left(z^{n}\right)=f^{[-1]}(n f(\xi(z)))
$$

In this note, we prove above theorem under weaker conditions that convex additive generator f and concave shape functions L and R.

2. The results

We need the following known result of Hong and Hwang[5].

Lemma 1[5]. Let T be an Archimedian t norm with additive generator f and let $\xi=\xi_{i}=(a, \alpha, \beta)_{L R}$ be fuzzy numbers of $L R$ type. If L and R are concave functions and f is convex function, then

$$
\left(\xi_{1}+\cdots+\xi_{n}\right)(n z)=f^{[-1]}(n f(\xi(z)))
$$

We now prove the main result which generalizes Theorem 1.

Theorem 2. Let T be an Archimedian t-norm with additive generator f and let $\xi=\xi_{i}=(a, \alpha, \beta)_{L R}$ be positive fuzzy numbers of $L R$ type. If L and R are concave functions and f is convex function, then

$$
\left(\xi_{1}+\cdots+\xi_{n}\right)(n z)=\left(\xi_{1} \cdots \xi_{n}\right)\left(z^{n}\right)=f^{[-1]}(n f(\xi(z))) .
$$

Proof. Let $z \geq 0$ be arbitrary fixed. From Lemma 1, it suffices to prove that

$$
\left(\xi_{1} \cdots \xi_{n}\right)(z)=f^{[-1]}\left(n f\left(\xi\left(z^{\frac{1}{n}}\right)\right)\right)
$$

As mentioned in (1),

$$
\left(\xi_{1} \cdots \xi_{n}\right)(z)=f^{[-1]}\left(\inf _{x_{1} \cdots x_{n}=z}\left(\sum_{\imath=1}^{n} f\left(\xi_{i}\left(x_{i}\right)\right)\right)\right)
$$

By setting $w_{i}=\ln x_{i}$, we have

$$
f^{[-1]}\left(\inf _{x_{i} \cdots x_{n}=}=\left(\sum_{i=1}^{n} f\left(\xi_{i}\left(x_{i}\right)\right)\right)\right)=f^{[-1]}\left(\inf _{w_{1}+\cdots+w_{n}=\ln 2}\left(\sum_{i=1}^{n} f\left(\xi_{i}\left(\exp \left(w_{i}\right)\right)\right)\right) .\right.
$$

By the convex decreasing property of f and the concavity of ξ, we obtain

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} f\left(\xi_{i}\left(\exp \left(w_{i}\right)\right)\right) & \geq f\left(\xi_{i}\left(\frac{1}{n} \sum_{i=1}^{n}\left(\exp \left(w_{i}\right)\right)\right)\right) \\
& \left.\geq f\left(\xi_{i}\left(\exp \left(\frac{1}{n} \sum_{i=1}^{n} w_{i}\right)\right)\right)\right) \\
& =f\left(\xi\left(z^{\frac{1}{n}}\right)\right) .
\end{aligned}
$$

By taking $w_{i}=\frac{1}{n} \ln z, \quad i=1, \cdots, n$, we have

$$
\inf _{x_{1} \cdots x_{n}=z}\left(\sum_{i=1}^{n} f\left(\xi_{i}\left(x_{i}\right)\right)\right)=\inf _{w_{1}+\cdots+w_{n}=\ln z}\left(\sum_{i=1}^{n} f\left(\xi_{i}\left(\exp \left(w_{i}\right)\right)\right)\right)=n f\left(\xi\left(z^{\frac{1}{n}}\right)\right),
$$

which completes the proof.

For the case of non-positive fuzzy numbers, we consider the following known result for 0 -symmetric fuzzy number.

Lemma 2[5]. Let T be an Archimedian t-norm with additive generator f and let $\tilde{0}_{s}=(0, \alpha, \alpha)_{R}$ be a symmetric fuzzy number. If R is concave and f is convex, then the membership function of T^{-}product $\widetilde{0}_{s} \cdots \widetilde{0}_{s}$ is given by

$$
\widetilde{0}_{s} \cdots \widetilde{0}_{s}(z)= \begin{cases}f^{-1}\left(n f\left(R\left(z^{\frac{1}{n}}\right)\right)\right) & \text { if } \\ 0 & \text { otherwise } .\end{cases}
$$

Using this result, the following result is immediate.
Theorem 3. Let T be an Archimedian t norm with additive generator f and let $\xi=\xi_{i}=(0, \alpha, \alpha)_{R}$ be 0 -symmetric fuzzy numbers of R type. If R is concave function and f is convex function, then

$$
\left(\xi_{1}+\cdots+\xi_{n}\right)(n z)=\left(\xi_{1} \cdots \xi_{n}\right)\left(z^{n}\right)=f^{[-1]}(n f(\xi(z)))
$$

References

1. Dubois, D. and Prade, H., Additions of interactive fuzzy numbers, IEEE trans, Autom. Control, 26, 926-936.
2. Fullér, R. and Keresztfalvi, T. (1992). t-norm-based addition of fuzzy intervals, Fuzzy Sets and Systems, 51, 155-159.
3. Fullér R., (1991). On product-sum of triangular fuzzy numbers, Fuzzy Sets and Systems, 41, 83-87.
4. Fullér R. and Keresztfalvi, T. (1992). A note on t-norm-based operations on $L R$ fuzzy intervals, Kybernetika, 2845-49.
5. Hong, D. H. and Hwang, S. Y. (1994). On the convergence of $T^{\text {-sum }}$ of $L^{-} R$ fuzzy numbers, Fuzzy Sets and Systems, 63, 175-180.
6. Hong, D. H. and Hwang, S. Y. (1997). The convergence of T-product of fuzzy numbers, Fuzzy Sets and Systems, 85, 373-378.
[received date : Aug. 2005, accepted date: Nov. 2005]

[^0]: 1) First Author : Professor, Department of Mathematics, Myongji University, Kyunggi 449-728, Korea
 E-mail : dhhong@mju.ac.kr
 2) Professor, Department of Electronics and Electrical Engineering, Kyungwon University, Kyunggi 461-701, Korea
 E-mail: ktkim@kyungwon.ac.kr
