On fuzzy semi-topogenous orders

Young Sun Kim

Department of Applied Mathematics, Pai Chai University

Abstract

We investigate the properties of fuzzy semi-topogenous orders. We study the relationship among fuzzy supra topologies, fuzzy supra interior operators and fuzzy semi-topogenous orders. We give examples of them.

Keywords: Fuzzy semi-topogenous orders, Fuzzy supra-interior operators, Fuzzy supra topologies.

1. Introduction and Preliminaries

Csaszar[3] introduced the concept of a syntopogenous structure to develop to the three main structures of topologies, proximities and uniformities. Katsaras and Petalas [11] extended them to the theory of fuzzy sets. Katsaras [4-11] has developed in many directions. Abd El-Monsef and Ramadan [1] defined some of their properties and studied the concept of fuzzy supra topological spaces. Kim and Ko [12] investigated fuzzy semi-topogenous orders and fuzzy supra topologies.

In this paper, we investigate the properties of fuzzy semi-topogenous orders fuzzy supra topologies and fuzzy interior operators. We study the relationship between them and give examples of them.

Thought this paper, let X be a nonempty set, I=[0,1] and I^X the family of all fuzzy subsets of X. For $\alpha \in I$, $\overline{\alpha}(x) = \alpha$ for all $x \in X$. For a subset A of X, χ_A is a characteristic function of A.

Definition 1.1([1,2]) A subset τ of I^X is called a *fuzzy* supra topology on X if it satisfies the following conditions:

(O1) $\overline{0}$, $\overline{1} \in \tau$,

(O2) $\bigvee_{\tau} \mu_i \in \tau$ for any $\mu_i \in \tau$.

A fuzzy supra topology τ is called a *fuzzy topology* if it satisfies

(O3) $\mu_1 \land \mu_2 \in \tau$ for any $\mu_1, \mu_2 \in \tau$.

The pair (X, τ) is called a *fuzzy* (resp. *supra*) topological space.

Definition 1.2([1,2]) A function int: $I^X oup I^X$ is called *a fuzzy supra interior operator* on X if it satisfies the following conditions:

(I1) $int(\overline{1}) = \overline{1}$.

접수일자: 2003년 5월 22일 완료일자: 2003년 7월 16일

This study was financially supported by a Central Research Fund in 2001 from Pai-Chai University.

- (I2) $\operatorname{int}(\lambda) \leq \lambda$ for each $\lambda \in I^X$.
- (I3) If $\lambda_1 \leq \lambda_2$, then $\operatorname{int}(\lambda_1) \leq \operatorname{int}(\lambda_2)$ where $\lambda_1, \lambda_2 \in I^X$.

A fuzzy supra interior operator int is called a *fuzzy* interior operator if it satisfies

(I) $\operatorname{int}(\lambda_1 \wedge \lambda_2) = \operatorname{int}(\lambda_1) \wedge \operatorname{int}(\lambda_2)$, where $\lambda_1, \lambda_2 \in I^X$.

A fuzzy supra interior operator int is called *topological* if it satisfies

(T) $\operatorname{int}(\operatorname{int}(\lambda)) = \operatorname{int}(\lambda)$ for each $\lambda \in I^X$.

Theorem 1.3([1,2]) Let (X, τ) be a fuzzy (resp. supra) topological space. We define a function int $_{\tau}I^X \rightarrow I^X$ as follows:

int
$$_{\tau}(\lambda) = \bigvee \{ \mu \in I^X \mid \mu \leq \lambda, \mu \in \tau \}$$

Then int $_{\tau}$ is a topological fuzzy (resp. supra) interior operator on X.

Let \ll be a binary relation on X. The facts that $(\lambda, \mu) \in \ll$ and $(\lambda, \mu) \notin \ll$ are denoted by $\lambda \ll \mu$ and $\lambda \overline{\langle \langle} \mu$, respectively.

Definition 1.4([11]) A binary relation \ll on I^X is called a *fuzzy semi-topogenous order* on X if it satisfies:

- (T1) $\overline{1} \ll \overline{1}$ and $\overline{0} \ll \overline{0}$,
- (T2) if $\lambda \ll \mu$, then $\lambda \leq \mu$, where $\lambda, \mu \in I^X$.
- (T3) if $\lambda \leq \lambda_1 \ll \mu_1 \leq \mu$, then $\lambda \ll \mu$, where $\lambda_1, \lambda_2, \mu_1, \mu_2 \in I^X$.

Let \ll be a fuzzy semi-topogenous order on X. We define $\lambda \leqslant \mu$ iff $(\overline{1} - \mu) \ll (\overline{1} - \lambda)$, where $\lambda, \mu \in I^X$.

Then $\langle \langle \rangle^s$ is a fuzzy semi-topogenous order on X.

Definition 1.5 ([11]) A fuzzy semi-topogenous order \ll is called:

- (1) symmetric if $\ll = \langle \langle \rangle^s$, that is,
 - (T4) $\lambda \ll \mu$ iff $(\overline{1} \mu) \ll (\overline{1} \lambda)$
- (2) fuzzy topogenous if for any $\lambda, \lambda_1, \lambda_2, \mu, \mu_1, \mu_2 \in I^X$,
 - (T5) $\lambda_1 \bigvee \lambda_2 \ll \mu$ iff $\lambda_1 \ll \mu$, $\lambda_2 \ll \mu$
 - (T6) $\lambda \ll \mu_1 \wedge \mu_2$ iff $\lambda \ll \mu_1$, $\lambda \ll \mu_2$
- (3) perfect if, for any $\{\mu, \lambda_i \mid i \in \Gamma\} \subset I^X$,

(T7) $\bigvee_{\Gamma} \lambda_i \ll \mu$ iff $\lambda_i \ll \mu$, for all $i \in \Gamma$.

(4) biperfect if it is perfect and any $\{\lambda, \mu_i \mid i \in \Gamma\} \subset I^X$, (T8) $\lambda \ll \bigwedge_i \mu_i$ iff $\lambda \ll \mu_i$, for all $i \in \Gamma$.

Definition 1.6 ([11]) Let $\langle \langle \langle \rangle \rangle$ be fuzzy semi-topogenous orders on X. $\langle \langle \rangle \rangle$ is finer than $\langle \langle \rangle \rangle$ is coarser than $\langle \langle \rangle \rangle$ if $\lambda \langle \langle \rangle \rangle \mu$ for all $\lambda \langle \langle \rangle \rangle \mu$.

Definition 1.7 ([11]) A fuzzy topogenous order \ll on X is called a *fuzzy topogenous structure* if it satisfies the following condition:

(T) $\ll \cdot \ll$ is finer than \ll where $\ll \cdot \ll$ is defined by, for any $\lambda, \mu \in I^X$, $\lambda(\ll \cdot \ll)\mu$ iff there exists $\rho \in I^X$ such that $\lambda \ll \rho$ and $\rho \ll \mu$.

The pair (X, \ll) is called a fuzzy topogenous space.

Theorem 1.8 ([12]) Let \ll be a fuzzy semi-topogenous order on X. We define the mapping int $\langle \cdot : I^X \rightarrow I^X \rangle$ is as follows: for each $\lambda \in I^X$

int
$$\langle \langle (\lambda) = \bigvee \{ \mu \in I^X \mid \mu \ll \lambda \} \}$$
.

Then we have the following properties:

- (1) int ((is a fuzzy supra interior operator.
- (2) If \ll satisfies (T6), then int \ll is a fuzzy interior operator.
- (3) If ≪ satisfies (T5), then int ((' is a fuzzy interior operator.
- (4) If $\ll \cdot \ll$ is finer than \ll , then, for each $\lambda \in I^X$, int $((\inf ((\lambda))) = \inf ((\lambda))$.
- (5) If \ll is a fuzzy topogenous structure, then int \ll is a topological fuzzy interior operator.

Theorem 1.9 ([12]) Let \ll be a fuzzy semi-topogenous order on X. Define a fuzzy topology on X by $\tau_{\text{int }\alpha} = \{\lambda \in I^X \mid \text{int } \langle \langle (\lambda) = \lambda \}.$

Then:

- (1) $\tau_{\text{int.}, i}$ is a fuzzy supra topology on X induced by int $\langle \langle \cdot \rangle$.
- (2) If \ll satisfies (T6), then τ_{int}_{\ll} is a fuzzy topology on X
- (3) If \ll is perfect, then $\lambda \in \tau_{\text{int}}$ iff $\lambda \ll \lambda$ for each $\lambda \in I^X$.

Theorem 1.10 ([12]) Let int be a fuzzy supra interior operator on X. Define a binary relation $\langle \langle \rangle_{int}$ as

$$\lambda \langle \langle _{int} \mu \text{ iff } \lambda \leq int(\mu).$$

Then:

- (1) $\langle \langle \rangle_{\text{int}}$ is a perfect fuzzy semi-topogenous order on X such that $\inf_{\langle \langle \rangle_{\text{int}}} (\lambda) = \inf(\lambda)$ for each $\lambda \in I^X$.
- (2) If int is a fuzzy interior operator on X, then $\langle \langle \rangle_{int}$ is a fuzzy topogenous order on X.
- (3) If $int(int(\lambda)) = int(\lambda)$ for each $\lambda \in I^X$, then

 $(\langle\langle i_{int} \circ \langle\langle i_{int} \rangle)$ is finer than $\langle\langle i_{int} \rangle$.

- (4) If int be a topological fuzzy interior operator on X, then $\langle \langle \rangle_{\text{int}}$ is a fuzzy topogenous structure on X.
- (5) If \ll is a fuzzy semi-topogenous order, then << int $_{\ll}$.
- (6) If \ll is a perfect fuzzy semi-topogenous order, then $\ll = <<$ int...

The properties of fuzzy semi-topogenous orders

Theorem 2.1 Let τ be a fuzzy supra topology on X. Define a relation

 $\lambda \langle \langle \tau \mu \text{ iff there exists } \rho \in \tau \text{ such that } \lambda \leq \rho \leq \mu.$

Then:

- (1) $\langle \langle \rangle_r$ is a perfect fuzzy semi-topogenous order on X.
- (2) If τ be a fuzzy topology on X, then $\langle \langle \rangle_{\tau}$ is a perfect fuzzy topogenous order on X.
- (3) $\langle \langle r = \langle \langle int_r \rangle$

Proof (1) (T1) Since $\overline{0}$, $\overline{1} \in \tau$, we have $\overline{1} \langle \langle , \overline{1} \rangle$ and $\overline{0} \langle \langle , \overline{0} \rangle$.

- (T2) If $\lambda \langle \langle \tau \mu \rangle$, there exists $\rho \in \tau$ such that $\lambda \leq \rho \leq \mu$.
- (T3) It follows from the definition of $\langle \langle \cdot \rangle_{r}$.
- (T7) Since $\lambda_i \leq \bigvee_{i \in \Gamma} \lambda_i$ for $i \in \Gamma$, by (T3)implies $\lambda_i \ll_{\tau} \mu$, for all for $i \in \Gamma$.

Let $\lambda_i \leqslant \zeta_\tau \mu$, for all for $i \in \Gamma$. For each $i \in \Gamma$, there exists $\rho_i \in \tau$ such that $\lambda_i \le \rho_i \le \mu$ X. It implies $\bigvee_{i \in \Gamma} \lambda_i \le \bigvee_{i \in \Gamma} \rho_i \le \mu$ and $\bigvee_{i \in \Gamma} \rho_i \in \tau$. Hence $\bigvee_{i \in \Gamma} \lambda_i \leqslant \zeta_\tau \mu$.

(2) We only show that $\lambda \langle \langle {}_{\tau}\mu_1 \rangle$ and $\lambda \langle \langle {}_{\tau}\mu_2 \rangle$ implies $\lambda \langle \langle {}_{\tau}\mu_1 \wedge \mu_2 \rangle$

Let $\lambda \langle \langle \tau \mu_1 \text{ and } \lambda \langle \langle \tau \mu_2 \rangle$. Then there exist $\rho_1, \rho_2 \in \tau$ such that $\lambda \leq \rho_1 \leq \mu_1$, $\lambda \leq \rho_2 \leq \mu_2$

Since $(\rho_1 \land \rho_2) \in \tau$ and $\lambda \leq (\rho_1 \land \rho_2) \leq (\mu_1 \land \mu_2)$.

we have $\lambda \langle \langle \tau_1(\mu_1 \wedge \mu_2) \rangle$.

(3) Let $\lambda \leqslant \inf_{r} \mu$. Since $\lambda \leqslant \inf_{r}(\mu) \leqslant \mu$ and $\inf_{r}(\mu) \in \tau$, then $\lambda \leqslant \iota_{\tau} \mu$. Let $\lambda \leqslant \iota_{\tau} \mu$. Then there exists $\rho \in \tau$ such that $\lambda \leqslant \rho \leqslant \mu$. Since $\inf_{\tau}(\rho) = \rho$, $\lambda \leqslant \iota_{\inf_{\tau}} \rho \leqslant \mu$ implies $\lambda \leqslant \iota_{\inf_{\tau}} \mu$.

Example 2.2 Let $X = \{x, y, z\}$ be a set. Define a fuzzy supra topology $\tau = \{\overline{0}, \overline{1}, \chi_{\{x,y\}}, \chi_{\{y,z\}}\}$. We obtain

$$\lambda \langle \langle \tau_{\tau} \mu \text{ iff } \begin{cases} \lambda = \overline{0} \text{ or } \mu = \overline{1}, \\ \overline{0} \neq \lambda \leq \chi_{(x,y)} \overline{1} \neq \mu \geq \chi_{(x,y)} \\ \overline{0} \neq \lambda \leq \chi_{(y,z)} \overline{1} \neq \mu \geq \chi_{(y,z)} \end{cases}$$

Then $\langle \langle , \rangle$ is a fuzzy semi-topogenous order but not

topogenous order from:

$$\chi_{\{y\}} \stackrel{\langle \langle}{}_{\tau} \chi_{\{x,y\}}, \quad \chi_{\{y\}} \stackrel{\langle \langle}{}_{\tau} \chi_{\{y,z\}} \rangle$$
$$\chi_{\{y\}} \stackrel{\langle \langle}{}_{\tau} \chi_{\{y\}} = (\chi_{\{x,y\}} \wedge \chi_{\{y,z\}}).$$

From Theorem 1.2, we obtain supra interior operator int $I^X \rightarrow I^X$ as follows:

$$\operatorname{int}_{r}(\lambda) = \begin{cases} \overline{1} & \text{if } \lambda = \overline{1}, \\ \chi_{(x, y)} & \text{if } \chi_{(x, y)} \leq \lambda \neq \overline{1} \\ \chi_{(y, z)} & \text{if } \chi_{(y, z)} \leq \lambda \neq \overline{1} \end{cases}$$

$$\overline{0} \quad \text{otherwise}$$

But it is not a fuzzy interior operator because $\overline{0}=\inf_{r}(\chi_{(x,y)}\wedge\chi_{(y,z)})\neq\inf_{r}(\chi_{(x,y)})\wedge\inf_{r}(\chi_{(y,z)})=\chi_{(y)}$ We easily show that the property (3) in Theorem 2.1 hold: $\lambda << \tau \mu$ iff $\lambda << \inf_{r} \mu$ for all $\lambda, \mu \in I^X$, that is, $<< \tau << \tau << \iota_{\text{int}}$. Thus $\tau_{\text{int}} = \{\overline{0}, \chi_{(x,y)}, \chi_{(y,z)}, \overline{1}\}$ is a supra fuzzy topology but not topology from

$$\chi_{(x,y)} \wedge \chi_{(y,z)} = \chi_{(y)} \notin r_{\text{int}_z}.$$

Theorem 2.3 Let \ll be a perfect fuzzy semi-topogenous order on X. Define $\lambda \in \tau_{<<}$ iff $\lambda \ll \lambda$.

Then (1) $\tau_{\langle\langle}$ is a fuzzy supra topology on X.

- (2) $\tau_{\langle\langle} = \tau_{\text{int}_{\langle\langle}}$.
- (3) If \ll is perfect fuzzy topogenous order on X, then τ_{\ll} is a fuzzy topology on X.
- (4) \ll is finer than ⟨⟨ τ_{α} .
- (5) If $\ll \cdot \ll$ is finer than \ll , then $\ll = << t_{t_{ij}}$.

Proof (1) (O1) Since $\overline{1} \langle \langle \overline{1} \rangle$ and $\overline{0} \langle \langle \overline{0} \rangle$, then $\overline{0}$, $\overline{1} \in \tau_{\langle \langle \cdot \rangle}$.

(O2)For all $i \in \Gamma$, $\lambda_i \in \tau_i$ iff for all $i \in \Gamma$, $\lambda_i \ll \lambda_i$ \Rightarrow for all $i \in \Gamma$, $\lambda_i \ll \bigvee_{r} \lambda_i$ (by (T3))

iff $\bigvee_{i \in \Gamma} \lambda_i \ll \bigvee_{i \in \Gamma} \lambda_i$ (\ll is perfect)

iff $(\bigvee_{i\in\Gamma}\lambda_i)\in\tau_{\eta}$.

(2) From Theorem 1.9(3), $\lambda \in r_{\langle\langle}$ iff $\lambda \ll \lambda$

iff
$$\lambda = \text{int } ((\lambda))$$
 iff $\lambda \in \tau_{\text{int } ((\lambda))}$

(3) We only show the condition (O3).

$$\lambda_1, \lambda_2 \in \tau_{\langle\langle\langle} \text{ iff } \lambda_1 \ll \lambda_1, \lambda_2 \ll \lambda_2 \rangle$$

 $\Rightarrow \lambda_1 \wedge \lambda_2 \ll \lambda_1, \lambda_1 \wedge \lambda_2 \ll \lambda_2$

iff $\lambda_1 \wedge \lambda_2 \ll \lambda_1 \wedge \lambda_2$ (\ll is topogenous)

iff $\lambda_1 \wedge \lambda_2 \in \tau_{\ll}$.

(4) Let $\lambda \langle \langle \tau_{\kappa} | \mu$. Then there exists $\rho \in \tau_{\langle \langle}$ with $\lambda \leq \rho \leq \mu$. Since $\rho \in \tau_{\langle \langle}$ iff $\rho \ll \rho$ and $\lambda \leq \rho \leq \mu$, by(T3), then $\lambda \ll \mu$. Thus, \ll is finer than $\langle \langle \tau_{\kappa} \rangle$.

(5) We show that $\langle\langle \, \, \, \, \, \rangle_{\tau_{\kappa}}$ is finer than \ll from (4). Let $\lambda \ll \mu$. Then $\lambda \leq \operatorname{int}_{\langle \langle}(\mu) \leq \mu$.

Since $\inf_{\langle\langle}(\inf_{\langle\langle}(\mu)) = \inf_{\langle\langle}(\mu)\text{ from Theorem 1.8(4), we have }\inf_{\langle\langle}(\mu) \in \tau_{\inf_{\langle\langle}}.$ Since $\tau_{\inf_{\langle\langle}} = \tau_{\langle\langle}$ from (2), we have $\inf_{\langle\langle}(\mu) \in \tau_{\langle\langle}.$ By Theorem 2.1, $\lambda\langle\langle \tau_{\iota,\mu} \mu.$

Theorem 2.4 Let τ be a fuzzy supra topology on X. Then $\tau_{\langle \langle \tau \rangle} = \tau_{\langle \langle \tau \rangle} = \tau$.

Proof By Theorem 2.1, $\langle\langle \cdot \rangle_r$ is a perfect fuzzy semi-topogenous order on X and $\langle\langle \cdot \rangle_r = \langle\langle \cdot \rangle_{int} \rangle$. Then, by Theorem 2.3, $\tau_{\langle \cdot \rangle_r} = \tau_{\langle \cdot \rangle_{int} \rangle}$. Let $\lambda \in \tau_{\langle \cdot \rangle_{int} \rangle}$. Then, by definition of $\tau_{\langle \cdot \rangle_{int} \rangle}$, $\lambda <\langle \cdot \rangle_r$ by definition of $\langle \cdot \rangle_r$, $\lambda \in \tau$ So, $\tau_{\langle \cdot \rangle_{int} \rangle} \subset \tau$.

Let $\lambda \in \tau$. Then int $_{\tau}(\lambda) = \lambda$. By Theorem 1.10, it implies $\lambda << _{\text{int}}$, λ iff $\lambda \in \tau_{<< _{\text{ust}}}$. Thus $\tau \subset \tau_{<< _{\text{ist}}}$. Hence $\tau = \tau_{<< _{\text{ist}}}$. It completes the proof.

Example 2.5 Let $X = \{x, y, z\}$ be a set. Define a relation \ll on I^X as follows:

$$\lambda \ll \mu \text{ iff } \begin{cases} \lambda = \overline{0} \text{ or } \mu = \overline{1}, \\ \overline{0} \neq \lambda \leq \chi_{(y)} \overline{1} \neq \mu \geq \chi_{(x,y)} \\ \overline{0} \neq \lambda \leq \chi_{(y)} \overline{1} \neq \mu \geq \chi_{(y,z)} \end{cases}$$

Then \ll is a perfect fuzzy semi-topogenous order but not topogenous order from:

$$\chi_{\{y\}} \ll \chi_{\{x,y\}}, \chi_{\{y\}} \ll \chi_{\{y,z\}}$$
$$\chi_{\{y\}} \ll \chi_{\{y\}} = (\chi_{\{x,y\}} \land \chi_{\{y,z\}}).$$

From Theorem 1.8, we can obtain a fuzzy supra interior operator int $\langle \langle :I^X \rightarrow I^X \rangle$ as follows:

$$\operatorname{int}_{\langle\langle}(\lambda) = \begin{cases} \overline{1} & \text{if } \lambda = \overline{1}, \\ \chi_{\langle y \rangle} & \text{if } \chi_{\langle x, y \rangle} \leq \lambda \neq \overline{1} \\ \chi_{\langle y \rangle} & \text{if } \chi_{\langle y, z \rangle} \leq \lambda \neq \overline{1} \\ \overline{0} & \text{otherwis} e \end{cases}$$

But it is not a fuzzy interior operator from

$$\overline{0} = \operatorname{int}_{\langle\langle}(\chi_{\{x,y\}} \land \chi_{\{y,z\}})$$

$$\neq \operatorname{int}_{\langle\langle}(\chi_{\{x,y\}}) \land \operatorname{int}_{\langle\langle}(\chi_{\{y,z\}}) = \chi_{\{y\}}.$$

We obtain $\tau_{\langle\langle} = \tau_{\text{int}_{\langle\langle}} = \{\overline{0}, \overline{1}\}$

Moreover, by Theorem 2.3(5), $\ll \cdot \ll$ is not finer than \ll from the fact that

$$\chi_{\{y\}} \overline{\ll \cdot \leqslant \chi_{\{x,y\}}}$$
 and $\chi_{\{y\}} \ll \chi_{\{x,y\}}$.

Then \ll is finer than \ll from the fact that

$$+\lambda \langle \langle \tau_{\alpha} \mu \text{ iff } \lambda = \overline{0} \text{ or } \mu = \overline{1}.$$

Example 2.6 Let X and τ be given as in Example 2.2. From Theorem 2.4, we can obtain

$$\tau_{\langle\langle \cdot \rangle} = \tau_{\langle\langle \cdot \rangle} = \tau = \{\overline{0}, \overline{1}, \chi_{\langle x, y \rangle}, \chi_{\langle y, z \rangle}\}$$

Theorem 2.7 Let (X, int) be a fuzzy supra interior space. Define a subset τ_{int} of I^X as

$$\tau_{\text{int}} = \{\lambda \mid \text{int}(\lambda) = \lambda\}.$$

Then:

- (1) τ_{int} is a fuzzy supra topology on X induced by int.
- (2) If (X, int) is a fuzzy interior space, τ_{int} is a fuzzy topology on X.
- (3) $\tau_{\text{int}} = \tau_{\langle\langle \cdot \rangle_{\text{nut}}}$.
- (4) int $\tau_m \leq \text{int}$.
- (5) $\langle \langle \rangle_{int}$ is finer than $\langle \langle \rangle_{\tau_{int}}$.
- (6) If (X, int) is topological, $(< i_{int} = < (i_{max})$ and $int_{r_{max}} = int$.

Proof (1) and (2) are similarly prove as in Theorem 1.9. (3) Let $\lambda \in \tau_{\text{int}}$ with $\text{int}(\lambda) = \lambda$. It implies $\lambda \leqslant \tau_{\text{int}} \lambda$ iff $\lambda \in \tau_{\leqslant_{\text{int}}}$. Thus, $\tau_{\text{int}} \subset \tau_{\leqslant_{\text{int}}}$.

Let $\lambda \in \tau_{\langle \zeta_{int} \rangle}$. Then $\lambda \langle \zeta_{int} \lambda \rangle$. It implies $\lambda \leq int(\lambda)$. Thus, $\lambda \in \tau_{int}$. So $\tau_{\langle \zeta_{int} \rangle} \subset \tau_{int}$.

(4) Suppose there exists $\lambda \in I^X$ such that

int
$$-(\lambda) \not \leq \operatorname{int}(\lambda)$$
.

Then there exists $x \in X$ such that

int
$$\tau_{unt}(\lambda)(x) > int(\lambda)(x)$$
.

By the definition of int τ_{ut} , there exists $\mu \in \tau_{int}$ with $int(\mu) = \mu \le \lambda$ such that

int
$$_{t_m}(\lambda)(x) \ge \mu(x) > \operatorname{int}(\lambda)(x)$$
.

Since $int(\mu) \le int(\lambda)$, it is a contradiction. Hence $int_{\tau_{ad}} \le int$.

- (5) Let $\lambda \leqslant r_{\text{\tiny ust}} \mu$. There exists $\rho \in \tau_{\text{int}}$ with $\operatorname{int}(\rho) = \rho$ such that $\lambda \leq \rho \leq \mu$. Since $\lambda \leq \rho = \operatorname{int}(\rho)$, we have $\lambda \leqslant r_{\text{\tiny int}} \rho$ implies $\lambda \leqslant r_{\text{\tiny int}} \mu$. Hence $r \leqslant r_{\text{\tiny int}}$ is finer than $r \leqslant r_{\text{\tiny int}} r$.
- (6) Let $\lambda \leqslant \inf_{\text{int}} \mu$. Then $\lambda \leqslant \inf(\mu) \leqslant \mu$. Since (X, int) is topological, $\inf(\mu) \in \tau_{\text{int}}$ Thus, $\lambda \leqslant \tau_{\text{\tiny rul}} \mu$

Hence $\langle \langle \rangle_{\tau_{est}}$ is finer than $\langle \langle \rangle_{int}$. Since (X, int) is topological, $int(int(\lambda)) = int(\lambda) \leq \lambda$.

It implies int $\tau_{mr}(\lambda) \ge \text{int}(\lambda)$. By (4), int $\tau_{mr} = \text{int}$.

Example 2.8 Let $X = \{x, y, z\}$ be a set. Define a fuzzy supra interior operator int: $I^X \rightarrow I^X$ as follows:

$$\operatorname{int}(\lambda) = \begin{cases} \overline{1} & \text{if } \lambda = \overline{1}, \\ \chi_{(x,y)} & \text{if } \chi_{(x,y)} \leq \lambda \neq \overline{1} \\ \chi_{(y,z)} & \text{if } \chi_{(y,z)} \leq \lambda \neq \overline{1} \\ \overline{0} & \text{otherwis} e \end{cases}$$

But it is not a fuzzy interior operator because

 $\overline{0} = \operatorname{int}(\chi_{(x,y)} \land \chi_{(y,z)}) \neq \operatorname{int}(\chi_{(x,y)}) \land \operatorname{int}(\chi_{(y,z)}) = \chi_{(y)}$. Thus $\tau_{\operatorname{int}}$ is a supra fuzzy topology but not a topology from the fact that

$$\tau_{\text{int}} = \{\overline{0}, \chi_{\{x,y\}}, \chi_{\{y,z\}}, \overline{1}\}.$$

$$\lambda \langle \langle _{\text{int}} \mu \text{ iff } \begin{cases} \lambda = \overline{0} \text{ or } \mu = \overline{1}, \\ \overline{0} \neq \lambda \leq \chi_{(x,y)} \overline{1} \neq \mu \geq \chi_{(x,y)} \\ \overline{0} \neq \lambda \leq \chi_{(y,z)} \overline{1} \neq \mu \geq \chi_{(y,z)} \end{cases}$$

Furthermore, $\tau_{int} = \tau_{(i)}$ and $int = int_{\tau_{int}}$.

Example 2.9 Let $X = \{x, y, z\}$ be a set. Define a fuzzy supra interior operator int: $I^X \rightarrow I^X$ as follows:

$$\operatorname{int}(\lambda) = \begin{cases} \overline{1} & \text{if } \lambda = \overline{1}, \\ \chi_{\{x\}} & \text{if } \chi_{\{x,y\}} \leq \lambda \neq \overline{1} \\ \overline{0} & \text{otherwis} e \end{cases}$$

We obtain $r_{int} = r_{\langle \langle m \rangle} = \{\overline{0}, \overline{1}\}$. Since

$$\chi_{\{x\}} = \operatorname{int}(\chi_{\{x,y\}}) \neq \operatorname{int}(\operatorname{int}(\chi_{\{x,y\}})) = \overline{0}$$

then int is not topological. We have $\langle\langle\ _{int} \, \neq \, \langle\langle\ _{r_{int}} \,$ as follows:

$$\lambda \langle \langle _{\text{int}} \mu \text{ iff } \begin{cases} \lambda = \overline{0} \text{ or } \mu = \overline{1}, \\ \overline{0} \neq \lambda \leq \chi_{\{x\}} \overline{1} \neq \mu \geq \chi_{\{x,y\}} \end{cases}$$

and

$$\lambda \ll \mu$$
 iff $\lambda = 0$ or $\mu = 1$,

Furthermore, int \neq int τ_{mt} from the fact that

$$\operatorname{int}_{\tau_{\operatorname{out}}}(\lambda) = \begin{cases} \overline{1} & \text{if } \lambda = 1, \\ \overline{0} & \text{otherwis} e \end{cases}$$

References

- [1] M. Abd El-Monsef and A.E. Ramadan," On fuzzy supra topological spaces", *Indian J. Pure Appl. Math..*, vol 28(4) pp322-329, 1987
- [2] C.L. Chang," Fuzzy topological spaces", J. Math. Anal. Appl. vol 24, pp182–190, 1968.
- [3] A. Csaszar, Foundations of General topology, Pergamon Press, 1963.
- [4] A.K. Katsaras," On fuzzy proximity spaces", *J. Math Anal. Appl.*, vol 75, 571–583,1980
- [5] A.K. Katsaras, "Fuzzy proximity spaces," *J. Math. Anal. Appl.* vol 68,pp100–110. 1979

- [6] A.K. Katsaras, "Totally bounded fuzzy syntopogenous structures", Fuzzy Sets and System, vol 28, pp 91-105,1988.
- [7] A.K. Katsaras," Fuzzy syntopogenous structures compatible with Lowen fuzzy uniformities and Artico-Moresco fuzzy proximities", Fuzzy Sets and Systems vol 36, pp 375–393,1990
- [8] A.K. Katsaras,"Operations on fuzzy syntopogenous structures", *Fuzzy Sets and Systems*, vol 43, pp 199–217,1991.
- [9] A.K. Katsaras, "Fuzzy quasi-proximities and fuzzy quasi-uniformities", Fuzzy Sets and Systems vol 27, pp 335-343, 1988.
- [10] A.K. Katsaras and C.G. Petalas, "A unified theory of fuzzy topologies, fuzzy proximities and fuzzy uniformities", *Rev.Roum. Math.Pures Appl* vol 28(9), pp 845–856, 1983.
- [11] A.K. Katsaras and C.G. Petalas," On fuzzy syntopogenous structures" *J. Math. Anal.* Appl. vol 99(1) pp 219--236,1984.
- [12] Y.C.Kim and J.M.Ko," Fuzzy semi-topogenous orders and fuzzy supra topologies" *J. of Fuzzy Logic and Intelligent Systems.* vol 13(3) pp 355--359, 2003.
- [13] Liu Ying-Ming and Luo Mao-Kang, Fuzzy topology, World Scientific Pub .Co., 1997.

저 자 소 개

김영선 (Young Sun Kim) 정회원

1981년 : 연세대학교 수학과(이학사) 1985년 : 연세대학교 수학과(이학석사) 1991년 : 연세대학교 수학과(이학박사) 1988년 :-현재: 배재대학교 자연과학부 전산정보수학전공교수

관심분야: Fuzzy topology, Category Theory

E-mail: yskim@mail.pcu.ac.kr