• 제목/요약/키워드: fuzzy indirect

검색결과 91건 처리시간 0.025초

유계상수 추정과 동적인 퍼지 규칙 삽입을 이용한 비선형 계통에 대한 강인한 적응 퍼지 제어기 설계 (Design of Robust Adaptive Fuzzy Controller for Uncertain Nonlinear System Using Estimation of Bounding Constans and Dynamic Fuzzy Rule Insertion)

  • 박장현;박귀태
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권1호
    • /
    • pp.14-21
    • /
    • 2001
  • This paper proposes an indirect adaptive fuzzy controller for general SISO nonlinear systems. In indirect adaptive fuzzy control, based on the proved approximation capability of fuzzy systems, they are used to capture the unknown nonlinearities of the plant. Until now, most of the papers in the field of controller design for nonlinear system considers the affine system using fuzzy systems which have fixed grid-rule structure. We proposes a dynamic fuzzy rule insertion scheme where fuzzy rule-base grows as time goes on. With this method, the dynamic order of the controller reduces dramatically and an appropriate number of fuzzy rules are found on-line. No a priori information on bounding constants of uncertainties including reconstruction errors and optimal fuzzy parameters is needed. The control law and the update laws for fuzzy rule structure and estimates of fuzzy parameters and bounding constants are determined so that the Lyapunov stability of the whole closed-loop system is guaranteed.

  • PDF

Design of T-S Fuzzy Model based Adaptive Fuzzy Observer and Controller

  • Ahn, Chang-Hwan
    • 조명전기설비학회논문지
    • /
    • 제23권11호
    • /
    • pp.9-21
    • /
    • 2009
  • This paper proposes the alternative observer and controller design scheme based on T-S fuzzy model. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given unknown nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. The proposed controller is based on a simple output feedback method. Therefore, it solves the singularity problem, without any additional algorithm, which occurs in the inverse dynamics based on the feedback linearization method. The adaptive fuzzy scheme estimates the parameters and the feedback gain comprising the fuzzy model representing the observation system. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observer and controller, they are applied to an inverted pendulum on a cart.

퍼지 간접추론법과 수정형 지글러-니콜스법에 의한 비례-적분-미분 제어기의 점진적 동조 (Iterative Tuning of PID Controller by Fuzzy Indirect Reasoning and a Modified Zigler-Nichols Method)

  • Kim, S.D.
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.74-83
    • /
    • 1996
  • An iterative tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the following tuning process can be made effectively. The design paramaters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proposed tuning method can produce an effective tuning for arbitrary design performances.

  • PDF

불확실한 비선형 계통에 대한 간접 적응 퍼지 슬라이딩 모드 제어기 설계 (Design of Indirect Adaptive Fuzzy Sliding Mode Controller for Uncertain Nonliear Systems)

  • 서삼준;서호준;김동식;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2081-2083
    • /
    • 2001
  • In this paper, without mathematical modeling dynamics, the plant parameter in sliding mode are estimated by the indirect adaptive fuzzy control. Adaptive laws for fuzzy parameters and fuzzy rule structure are established so that the whole system is stable in the sense of Lyapunov stability. The computer simulation results for inverted pendulum system show the performance of the proposed fuzzy sliding mode controller.

  • PDF

Robust adaptive fuzzy controller for an inverted pendulum

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1267-1271
    • /
    • 2003
  • This paper proposes an indirect adaptive fuzzy controller for general SISO nonlinear systems. No a priori information on bounding constants of uncertainties including reconstruction errors and optimal fuzzy parameters is needed. The control law and the update laws for fuzzy rule structure and estimates of fuzzy parameters and bounding constants are determined so that the Lyapunov stability of the whole closed loop system is guaranteed. The computer simulation results for an inverted pendulum system show the performance of the proposed robust adaptive fuzzy controller.

  • PDF

간편간접추론방법을 이용한 비선형 퍼지 I+PD 제어기의 설계 (Design of Nonlinear Fuzzy I+PD Controller Using Simplified Indirect Inference Method)

  • 채창현;채석;박재완;윤명기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2898-2901
    • /
    • 1999
  • This paper describes the design of nonlinear fuzzy I+PD controller using simplified indirect inference method. First, the fuzzy I+PD controller is derived from the conventional continuous time linear I+PD controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional I+PD controller. which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability. Particularly when the process to be controlled is nonlinear When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one Proposed by D. Misir et at.

  • PDF

간편 간접추론방법을 이용한 비선형 퍼지 PI+D 제어기의 설계 (Design of Nonlinear Fuzzy PI+D Controller Using Simplified Indirect Inference Method)

  • 채창현;이상태;류창렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2839-2842
    • /
    • 1999
  • This paper describes the design of fuzzy PID controller using simplified indirect inference method. First, the fuzzy PID controller is derived from the conventional continuous time linear PID controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PID controller, which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF

Direct Adaptive Fuzzy Control with Less Restrictions on the Control Gain

  • Phan, Phi Anh;Gale, Timothy J.
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.621-629
    • /
    • 2007
  • In the adaptive fuzzy control field for affine nonlinear systems, there are two basic configurations: direct and indirect. It is well known that the direct configuration needs more restrictions on the control gain than the indirect configuration. In general, these restrictions are difficult to check in practice where mathematical models of plant are not available. In this paper, using a simple extension of the universal approximation theorem, we show that the only required constraint on the control gain is that its sign is known. The Lyapunov synthesis approach is used to guarantee the stability and convergence of the closed loop system. Finally, examples of an inverted pendulum and a magnet levitation system demonstrate the theoretical results.

파라미터 변동을 고려한 유도전동기 드라이브의 퍼지제어기 설계 (Design of Fuzzy Controller of Induction Motor Drive with Considering Parameter Variation)

  • 정동화;이정철;이홍균
    • 전기학회논문지P
    • /
    • 제51권3호
    • /
    • pp.111-119
    • /
    • 2002
  • This paper proposes a speed control system based on a fuzzy logic approach, integrated with a simple and effective adaptive algorithms. And this paper attempts to provide a thorough comparative insight into the behavior of induction motor drive with PI, direct and improved fuzzy speed controller. A indirect vector controlled induction motor is simulated under varying operating condition. The validity of the comparative results is confirmed by simulation results for induction motor drive system.

An Indirect Model Reference Adaptive Fuzzy Control for SISO Takagi-Sugeno Model

  • Cho, Young-Wan;Park, Chang-Woo;Lee, Ki-Chul;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.32-42
    • /
    • 2001
  • In this paper, a parameter estimator is developed for the plant model whose structure is represented by the Takagi-Sugeno model. The essential idea behind the on-line estimation is the comparison of the measured stated with the state of an estimation model whose structure is the same as that of the parameterized model. Based on the parameter estimation scheme, and indirect Model Reference Adaptive Fuzzy control(MRAFC) scheme is proposed to provide asymptotic tracking of a reference signal for the systems with uncertain for slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop systems. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

  • PDF