• Title/Summary/Keyword: fuzzy decision

Search Result 825, Processing Time 0.023 seconds

SINE TRIGONOMETRIC SPHERICAL FUZZY AGGREGATION OPERATORS AND THEIR APPLICATION IN DECISION SUPPORT SYSTEM, TOPSIS, VIKOR

  • Qiyas, Muhammad;Abdullah, Saleem
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.137-167
    • /
    • 2021
  • Spherical fuzzy set (SFS) is also one of the fundamental concepts for address more uncertainties in decision problems than the existing structures of fuzzy sets, and thus its implementation was more substantial. The well-known sine trigonometric function maintains the periodicity and symmetry of the origin in nature and thus satisfies the expectations of the experts over the multi parameters. Taking this feature and the significance of the SFSs into the consideration, the main objective of the article is to describe some reliable sine trigonometric laws (ST L) for SFSs. Associated with these laws, we develop new average and geometric aggregation operators to aggregate the Spherical fuzzy numbers (SFNs). Then, we presented a group decision- making (DM) strategy to address the multi-attribute group decision making (MAGDM) problem using the developed aggregation operators. In order to verify the value of the defined operators, a MAGDM strategy is provided along with an application for the selection of laptop. Moreover, a comparative study is also performed to present the effectiveness of the developed approach.

Compelex fuzzy adaptive decision feedback equalizer using RLS algorithm (RLS알고리듬을 이용한 복소 퍼지 판정궤환 적응 등화기)

  • 이상연;김재범;김기용;이충웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1447-1452
    • /
    • 1996
  • In this papre, a complex fuzzy adaptive decision feedback equalizer using the RLS algorithm is proposed. The proposed equalizer is based on the complex fuzzy adaptive equalizer. The 'IF'-part of the complex fuzzy adaptive decision feedback equalizer has membership functions which are characterized by the sate of decision feedback. The role of decision feedback is to reduce the computational complexity. Computer simulation shows that the proposed equalizer not only reduces the computational complexity but also improves the performance compared with the conventional complex fuzzy adaptive equalizers under the assumption of perfect knowledge of the linear and nonlinear channels. The effects of error propagation due to wrong decision feedback is also shown.

  • PDF

On Evaluation Algorithm for Hierarchical Structure of Attributes with Interaction Relationship (상호연관성을 지닌 계층구조형문제의 평가 알고리즘)

  • Lee C.Y.;Lee S.T.
    • Journal of Korean Port Research
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 1993
  • In complex decision making such as ill-defined system, one of the main problem is how to treat ambiguous aspect of the decision making. According to the complexity and ambiguity of the objective systems, many types of evaluation attributes are necessary for the rational decision and the relationship among the attributes become complex and fuzzy. Fuzzy integral is very effective to evalute the complex system with interaction between attributes but how to save the evaluation efforts in the decision making process of grading the membership of the objects or alternative is the problem to be tackled. Because the more object there are to evaluate, the number of decisions to made increase exponentially. Therefore, this paper aimes to propose a new evaluation algorithm based on fuzzy integral which can save the evaluator's efforts in decision making process. The proposed algorithm is constructed as follows : First, compose the fuzzy measure by introducing AHP(Analytical Hierachy Process) & mutual interaction coefficient. Second, generate fuzzy measure value of monotone family set for calculating the fuzzy integral. The effectiveness of the proposed algorithm is investigated through the example and sensitivity of interaction coefficient is illustrated.

  • PDF

A Multi-Attribute Intuitionistic Fuzzy Group Decision Method For Network Selection In Heterogeneous Wireless Networks Using TOPSIS

  • Prakash, Sanjeev;Patel, R.B.;Jain, V.K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5229-5252
    • /
    • 2016
  • With proliferation of diverse network access technologies, users demands are also increasing and service providers are offering a Quality of Service (QoS) to satisfy their customers. In roaming, a mobile node (MN) traverses number of available networks in the heterogeneous wireless networks environment and a single operator is not capable to fulfill the demands of user. It is crucial task for MN for selecting a best network from the list of networks at any time anywhere. A MN undergoes a network selection situation frequently when it is becoming away from the home network. Multiple Attribute Group Decision (MAGD) method will be one of the best ways for selecting target network in heterogeneous wireless networks (4G). MAGD network selection process is predominantly dependent on two steps, i.e., attribute weight, decision maker's (DM's) weight and aggregation of opinion of DMs. This paper proposes Multi-Attribute Intuitionistic Fuzzy Group Decision Method (MAIFGDM) using TOPSIS for the selection of the suitable candidate network. It is scalable and is able to handle any number of networks with large set of attributes. This is a method of lower complexity and is useful for real time applications. It gives more accurate result because it uses Intuitionistic Fuzzy Sets (IFS) with an additional parameter intuitionistic fuzzy index or hesitant degree. MAIFGDM is simulated in MATLAB for its evaluation. A comparative study of MAIFDGM is also made with TOPSIS and Fuzzy-TOPSIS in respect to decision delay. It is observed that MAIFDGM have low values of decision time in comparison to TOPSIS and Fuzzy-TOPSIS methods.

FUZZY GOAL PROGRAMMING FOR CRASHING ACTIVITIES IN CONSTRUCTION INDUSTRY

  • Vellanki S.S. Kumar;Mir Iqbal Faheem;Eshwar. K;GCS Reddy
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.642-652
    • /
    • 2007
  • Many contracting firms and project managers in the construction industry have started to utilize multi objective optimization methods to handle multiple conflicting goals for completing the project within the stipulated time and budget with required quality and safety. These optimization methods have increased the pressure on decision makers to search for an optimal resources utilization plan that optimizes simultaneously the total project cost, completion time, and crashing cost by considering indirect cost, contractual penalty cost etc., practically charging them in terms of direct cost of the project which is fuzzy in nature. This paper presents a multiple fuzzy goal programming model (MFGP) that supports decision makers in performing the challenging task. The model incorporates the fuzziness which stems from the imprecise aspiration levels attained by the decision maker to these objectives that are quantified through fuzzy linear membership function. The membership values of these objectives are then maximized which forms the fuzzy decision. The problem is solved using LINGO 8 optimization solver and the best compromise solution is identified. Comparison between solutions of MFGP, fuzzy multi objective linear programming (FMOLP) and multiple goal programming (MGP) are also presented. Additionally, an interactive decision making process is developed to enable the decision maker to interact with the system in modifying the fuzzy data and model parameters until a satisfactory solution is obtained. A case study is considered to demonstrate the feasibility of the proposed model for optimization of project network parameters in the construction industry.

  • PDF

AGGREGATION OPERATORS OF CUBIC PICTURE FUZZY QUANTITIES AND THEIR APPLICATION IN DECISION SUPPORT SYSTEMS

  • Ashraf, Shahzaib;Abdullah, Saleem;Mahmood, Tahir
    • Korean Journal of Mathematics
    • /
    • v.28 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • The paper aim is to resolve the issue of ranking to the fuzzy numbers in decision analysis, artificial intelligence and optimization. In the literature lot of ideologies have been established for ranking to the fuzzy numbers, that ideologies have some restrictions and limitations. In this paper, we proposed a method based on cubic picture fuzzy information's, for ranking to defeat the existing restrictions. Further introduced some cubic picture fuzzy algebraic and cubic picture fuzzy algebraic* aggregated operators for aggregated the information. Finally, a multi-attribute decision making problem is assumed as a practical application to establish the appropriateness and suitability of the proposed ranking approach.

Use of Fuzzy Set Theoretical Approach in Radioactive Waste Management (방사성 폐기물관리에 모호집합론적 접근법의 적용)

  • 문주현;김성호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.10a
    • /
    • pp.64-68
    • /
    • 1998
  • This paper discusses the potential application of fuzzy set theory to the decision-making in the area of radioactive waste management. the approach proposed in this study is based on the concepts of fuzzy set theory and the hierarchical structure analysis. The linguistic variables and fuzzy numbers are used to aggregate the decision maker's subjective assessments of the decision criteria and of the decision alternatives with respect to these criteria. For each alternative, the fuzzy appropriateness index is evaluated to obtain the final score. Using total integral value method, one of methods for ranking fuzzy numbers, the fuzzy appropriateness indices are ranked. As a case problem, selection of the most suitable option for spent fuel storage is illustrated.

  • PDF

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 박철수;손용우;이증빈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.274-283
    • /
    • 2002
  • This paper presents an efficient models for reinforeced concrete structures using CART-ANFIS(classification and regression tree-adaptive neuro fuzzy inference system). a fuzzy decision tree parttitions the input space of a data set into mutually exclusive regions, each of which is assigned a label, a value, or an action to characterize its data points. Fuzzy decision trees used for classification problems are often called fuzzy classification trees, and each terminal node contains a label that indicates the predicted class of a given feature vector. In the same vein, decision trees used for regression problems are often called fuzzy regression trees, and the terminal node labels may be constants or equations that specify the Predicted output value of a given input vector. Note that CART can select relevant inputs and do tree partitioning of the input space, while ANFIS refines the regression and makes it everywhere continuous and smooth. Thus it can be seen that CART and ANFIS are complementary and their combination constitutes a solid approach to fuzzy modeling.

  • PDF

APPLICATION OF FUZZY LINEAR PROGRAMMING FOR TIME COST TRADEOFF ANALYSIS

  • Vellanki S.S. Kumar;Mir Iqbal Faheem;Eshwar. K;GCS Reddy
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.69-78
    • /
    • 2007
  • In real world, the project managers handle conflicting goals that govern the use of resources within the stipulated time and budget with required quality and safety. These conflicting goals are required to be optimized simultaneously by the project managers in the framework of fuzzy aspiration levels. The fuzzy linear programming model proposed herein helps project managers to minimize total project costs, completion time, and crashing costs considering indirect costs, contractual penalty costs etc by practically charging them in terms of direct cost of the project. A case study of bituminous pavement under construction is considered to demonstrate the feasibility of applying the proposed model for optimization of project parameters. Consequently, the proposed model yields an efficient compromise solution and the decision maker's overall degree of satisfaction with multiple fuzzy goal values. Additionally, the proposed model provides a systematic decision-making framework, enabling decision maker to interactively modify the fuzzy data and model parameters until a satisfactory solution is obtained. The significant characteristics that differentiate the proposed model with other models include, flexible decision-making process, multiple objective functions, and wide-ranging decision information.

  • PDF

A Fuzzy-Goal Programming Approach For Bilevel Linear Multiple Objective Decision Making Problem

  • Arora, S.R.;Gupta, Ritu
    • Management Science and Financial Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-27
    • /
    • 2007
  • This paper presents a fuzzy-goal programming(FGP) approach for Bi-Level Linear Multiple Objective Decision Making(BLL-MODM) problem in a large hierarchical decision making and planning organization. The proposed approach combines the attractive features of both fuzzy set theory and goal programming(GP) for MODM problem. The GP problem has been developed by fixing the weights and aspiration levels for generating pareto-optimal(satisfactory) solution at each level for BLL-MODM problem. The higher level decision maker(HLDM) provides the preferred values of decision vector under his control and bounds of his objective function to direct the lower level decision maker(LLDM) to search for his solution in the right direction. Illustrative numerical example is provided to demonstrate the proposed approach.