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SINE TRIGONOMETRIC SPHERICAL FUZZY AGGREGATION

OPERATORS AND THEIR APPLICATION IN DECISION

SUPPORT SYSTEM, TOPSIS, VIKOR

Muhammad Qiyas and Saleem Abdullah

Abstract. Spherical fuzzy set (SFS) is also one of the fundamental concepts for
address more uncertainties in decision problems than the existing structures of
fuzzy sets, and thus its implementation was more substantial. The well-known
sine trigonometric function maintains the periodicity and symmetry of the origin in
nature and thus satisfies the expectations of the experts over the multi parameters.
Taking this feature and the significance of the SFSs into the consideration, the main
objective of the article is to describe some reliable sine trigonometric laws (STL) for
SFSs. Associated with these laws, we develop new average and geometric aggrega-
tion operators to aggregate the Spherical fuzzy numbers (SFNs). Then, we presented
a group decision- making (DM) strategy to address the multi-attribute group de-
cision making (MAGDM) problem using the developed aggregation operators. In
order to verify the value of the defined operators, a MAGDM strategy is provided
along with an application for the selection of laptop. Moreover, a comparative study
is also performed to present the effectiveness of the developed approach.

1. Introduction

Multiple attribute group decision making (MAGDM) method is one of the most
relevant and evolving topics explaining how to choose the finest alternative with com-
munity of experts with some attributes. There are two relevant tasks in this system.
The first is to define the context in which the values of the various parameters are ef-
fectively calculated, while the 2nd is to summarize the define information. Generally,
the information describing the objects is taken mostly in the form of deterministic
or crisp in nature. With the increasing complexity of a systems on a daily basis,
however, it is difficult to aggregate the data, from the logbook, resources and ex-
perts, in the crisp form. Therefore, [58] developed the core concept of fuzzy set (FS),
and also [1] work on it and further develop a new idea of intuitionistic fuzzy set
(IFS), [57] developed the Pythagorean fuzzy sets (PyFSs), [45] was defined the idea
of a hesitant fuzzy sets, which are used by scholars to communicate the information
clearly. In IFS, it is observed that each object have two membership grades positive
Ĕ and the negative Ž, which satisfying the condition 0 ≤ Ĕ + Ž ≤ 1, and for all
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Ĕ, Ž are lying in closed interval 0 and 1. However, in the Pythagorean fuzzy sets
this constraint is relaxed from Ĕ + Ž ≤ 1, to Ĕ2 + Ž2 ≤ 1 for Ĕ, Ž ∈ [0, 1]. Using
this concept, many researcher have strongly addressed the define two critical tasks
and discretion the techniques under the different aspects. The basic results of IFSs
and Pythagorean fuzzy sets such as the operational laws [11] some exponential op-
erational laws [17], some distance or similarity measures [18], [24], some information
entropy [22]. Many researchers [54], [55], [16], [12], [32], [23], under IFS, defined some
basic aggregation operators (AOs) , like as average and geometric, interactive AOs,
Hamacher AOs. While for Pythagorean fuzzy sets, some basic operators are proposed
by Peng & Yang [39]. To solve the MAGDM problems, Garg [13], [14] presented
some basic concept of Einstein aggregation operators. Some extended aggregation
operators dependent on intuitionistic and Pythagorean fuzzy information including
the TOPSIS technique based on IF [20] and Pythagorean fuzzy [59], partitioned Bon-
ferroni mean [37], Maclaurin symmetric mean [41], [19]. Apart form this, Yager et
al. [56], intuitively developed the idea of q-rung orthopair fuzzy sets (q-ROFSs). Gao
et al. [21],developed the basic idea of the continuities and differential of q-ROFSs.
Peng et al. [40] presented exponential & logarithmic operation laws for q-ROFNs.
Liu and Wang [33] developed weighted average and geometric aggregation operators
for q-ROFNs.

While, the idea of IFSs and Pythagorean FSs are widely studied and implemented
in various field. But their ability to express the information is still limited. Thus, it
was still difficult for the experts and their corresponding information to convey the
information in such sets. To overcome this information, the notion of the picture
fuzzy sets (PFSs), which is defined by Cuong [8]. Thus, it was clearly noticed that
PFS is the extented form of the IFSs, with accommodate some more ambiguities.
In picture fuzzy sets, each object observed by defining three grades of the member
named as membership Ĕ, neutral Ř and non-membership Ž with constraint that
Ĕ + Ř+ Ž ≤ 1, for Ĕ, Ř, Ž ∈ [0, 1]. The definition of the PFS will convey opinions of
experts like ”yes” ”abstain” ”no” and ”refusal” while avoiding missing evaluation de-
tails and encouraging the reliability of the acquired data with the actual environment
for decision-making. Although the concept of PFSs are widely studied and applied
in different fields. And their extension focus on the basic operational laws, which
is the important aspect of the PFS as well as aggregation operators (AOs), which
are an effective tools by the help of these AOs, we obtain raking of the alternatives
by providing the comprehensive values to the alternatives. Wei [47], developed some
operations of the PFS. Son [44], developed measuring analogousness in PFSs . Apart
from these, several other kinds of the AOs of the PFSs have been developed such
as logarithmic PF aggregation operators, which are presented by Khan [29] , Wang
et.al, [49] presented PF normalized projection based VIKOR method, Wang et al. [50],
develop PF Muirhead mean operators, Wei et al. [51], defined the idea of some q-ROF
maclaurin symmetric mean operators. Wang [52], introduced similarity measure of q-
ROFSs. Wei et al. [53], developed Bidirectional projection method for PFSs. Ashraf
et al. [6], [2], [?] developed the idea of different approaches to MAGDM problems,
picture fuzzy linguistic sets and exponential jensen PF divergence measure respec-
tively. khan [30], presented PF aggregation based on Einstein operation. Qiyas et
al. [42], presented linguistic PF Dombi aggregation operators. Cuong & Hai [9] defined
some operations and dedined some picture fuzzy logic operators for fuzzy derivation
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forms. The properties of PF t-norm & conorm are examined by Cuong, Kreinovich
& Ngan [10]. Phong et al. [38] analyze some design of PF relations. Akram et al. [7]
proposed a decision making model under complex PF Hamacher AOs. Ahmad et
al. [31] defined new operations on interval-valued picture fuzzy set, interval-valued
picture fuzzy soft set and their applications. Garg [15] developed some picture fuzzy
aggregation operators and an approach for multi-criteria decision-making. Lin et
al. [35] proposed a novel picture fuzzy MCDM model based on extended MULTI-
MOORA method to solve the site selection of car sharing station. Liu et al. [34]
defined the similarity measures for interval-valued picture fuzzy sets and discussed
their applications in decision making. Recently, Khan [29] defined the new concept
about logarithmic operation laws for PFSs.

In order to address this limitation which PFN can not handle, Shahzaib et al.
[3] defined the notion of Spherical fuzzy set (SFS) for the first time and identi-
fied some aggregation operators with the Spherical fuzzy information problem for
MADM. In the SFS, all the membership degrees are gratifying the condition 0 ≤(
ĔĬ(r)

)2

+
(
ŘĬ(r)

)2
+
(
ŽĬ(r)

)2 ≤ 1 rather than 0 ≤ ĔĬ(r) + ŘĬ(r) + ŽĬ(r) ≤ 1 as in

PFSs. Gundogdu et al. [28] specified the TOPSIS method for SFS and give example of
multi-attribute decision problem. Huanhuan et al. [26] defined SLFS, which combines
the concept of LFS with SFS. Ashraf et al. [4] using the Dombi method, described
some SF aggregation operators and discussed their decision making application, also
studied the presentation of SF t-norm and conorm in [5]. Jin Y et al. [25] developed
some Spherical fuzzy logarithmic AOs based on entropy and their application in de-
cision support systems. Rafiq et al. [43] introduced some cosine similarity measures
of Spherical fuzzy sets and their applications in decision making. Zeng et al. [60]
developed a Covering-based Spherical fuzzy rough set model hybrid with TOPSIS
for MADM. Mahmood et al. [36] define a model for decision making and medical
diagnosis problems using the concept of SFSs.

Among the above aspects, it is very clear that operational laws play main role
model for any aggregation process. Besides these mathematical logarithmic functions
another important feature is the sine trigonometry feature, which plays a main role
during the fusion of the information. In this way, taking into consideration the advan-
tages and usefulness of the sine trigonometric function, some new sine trigonometric
operational laws need to be developed for SFSs and their behavior studied. Con-
sequently, the paper’s purpose is to develop some new operation laws for SFSs and
also give the MAGDM algorithm for managing the information for SFSs evaluation.
Describe several more sophisticated operational laws for SFSs as well as a novel en-
tropy to remove the weight of the attributes to prevent subjective & objective aspects.
Some more generalized functional aggregation operators are presented with help of
the defined sine trigonometric operational laws (STOLs) for SFNs, many basic rela-
tions between the developed AOs are discussed and give a novel MAGDM technique
depending on the developed operators to solve the group decision making problems.
And finally, the proposed approach compared with the existing method.

So the goals and the motivations of this paper are as follows:

1. To present some more advanced operational laws for SFSs by combining the
features of the ST and SFNs.

2. A novel entropy is presented to extract the attributes’ weight for avoiding the
influence of subjective and objective aspects.
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3. To present some more generalized functional AOs with the help of the defined
STOLs for SFNs. Also, the several fundamental relations between the proposed
AOs are derived to show its significance.

4. To present a novel MAGDM method based on the proposed operators to solve
the group decisionmaking problems. The consistency of the proposed method
is confirmed through these examples, and their evaluations are carried out in
detail.

In second Section of the article, we can define some related to SFS. In Section
3, we define the new SFS operational laws based on sine trigonometric function and
their properties. In Section 4, we presented a series of AOs along with their required
properties, based on sine trigonometric operational laws. Section 5, provides the
basic connection between the developed AOs. In Section 6, using the new aggregation
operators, we introduce a new MAGDM approach and give detailed steps. An example
in the field of medical line using the SFNs information are given in Section 7, and
to validate the new method and comparative study is carried out with the current
methods are also given. Finally the work is concluded in Section 8.

2. Preliminaries

Some fundamental ideas about Spherical fuzzy set (SFS) on the universal set Ŭ are
discussed in this portion.

Definition 1. [3] Let Ŭ be the non-empty fixed sets. Then, the following set

(2.1) Ĭ =
(
ŭ, ĔĬ (ŭ) , ŘĬ (ŭ) , ŽĬ (ŭ) /ŭ ∈ Ŭ

)
.

Are said to be Spherical fuzzy set (SFS), where ĔĬ (ŭ) , ŘĬ (ŭ) , ĬĬ (ŭ) ∈ [0, 1] are
called as the grade of membership, positive, neutral and negative of the elements
ŭ ∈ Ŭ to the set Ĭ respectively, where the following constraint has been fulfilled by
Ĕ (ŭ) , Ř (ŭ) , Ĭ (ŭ) for all ŭ ∈ Ŭ .

(2.2) 0 ≤ Ĕ2 (ŭ) + Ř2 (ŭ) + Ž2 (ŭ) ≤ 1.

Furthermore, πĬ(ŭ) =

√
1−

(
Ĕ2 (ŭ) + Ř2 (ŭ) + Ž2 (ŭ)

)
is referred as the refusal

grade of ŭ ∈ Ŭ in Ĭ . For convenience,
(
ĔĬ (ŭ) , ŘĬ (ŭ) , ŽĬ (ŭ)

)
is called as an Spherical

fuzzy number (SFN).

Definition 2. [3] Let the three SFNs are Ĭ =
(
ĔĬ (ŭ) , ŘĬ (ŭ) , ŽĬ (ŭ)

)
Ĭ1 =(

ĔĬ1 (ŭ) , ŘĬ1
(ŭ) , ŽĬ1 (ŭ)

)
and Ĭ2 =

(
ĔĬ2 (ŭ) , ŘĬ2

(ŭ) , ŽĬ2 (ŭ)
)

. And also Ñ > 0, is

any scalar. Then,

1. Ĭc =
{
ŽĬ (ŭ) , ŘĬ (ŭ) , ĔĬ (ŭ)

}
;

2. Ĭ1∧Ĭ2 =
{

min
(
ĔĬ1 (ŭ) , ĔĬ2 (ŭ)

)
,min

(
ŘĬ1

(ŭ) , ŘĬ2
(ŭ)
)
,max

(
ŽĬ1 (ŭ) , ŽĬ2 (ŭ)

)}
;

3. Ĭ1∨Ĭ2 =
{

max
(
ĔĬ1 (ŭ) , ĔĬ2 (ŭ)

)
,min

(
ŘĬ1

(ŭ) , ŘĬ2
(ŭ)
)
,min

(
ŽĬ1 (ŭ) , ŽĬ2 (ŭ)

)}
;

4. Ĭ1⊕Ĭ2 =
{√

Ĕ2
Ĭ1

(ŭ) + Ĕ2
Ĭ2

(ŭ)− Ĕ2
Ĭ1

(ŭ) .Ĕ2
Ĭ2

(ŭ), ŘĬ1
(ŭ) .ŘĬ2

(ŭ) , ŽĬ1 (ŭ) .ŽĬ2 (ŭ)
}

;
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5. Ĭ1 ⊗ Ĭ2 =

 ĔĬ1 (ŭ) .ĔĬ2 (ŭ) ,
√
Ř2
Ĭ1

(ŭ) + Ř2
Ĭ2

(ŭ)− Ř2
Ĭ1

(ŭ) .Ř2
Ĭ2

(ŭ),√
Ž2
Ĭ1

(ŭ) + Ž2
Ĭ2

(ŭ)− Ž2
Ĭ1

(ŭ) .Ž2
Ĭ2

(ŭ)

 ;

6. Ñ Ĭ =

{√
1−

(
1− Ĕ2

Ĭ
(ŭ)
)Ñ
,
(
ŘĬ (ŭ)

)Ñ
,
(
ŽĬ (ŭ)

)Ñ}
;

7.
(
Ĭ
)Ñ

=

{(
ĔĬ (ŭ)

)Ñ
,

√
1−

(
1− Ř2

Ĭ
(ŭ)
)Ñ
,

√
1−

(
1− Ž2

Ĭ
(ŭ)
)Ñ}

.

Definition 3. [15] Let Ĭ =
(
ĔĬ (ŭ) , ŘĬ (ŭ) , ŽĬ (ŭ)

)
be the SFN. The score and

accuracy function are then described as, follows;

(2.3) S̄c
(
Ĭ
)

= ĔĬ (ŭ)− ŘĬ (ŭ)− ŽĬ (ŭ) , where S̄c
(
Ĭ
)
∈ [−1, 1] ,

(2.4) H̄c
(
Ĭ
)

= ĔĬ (ŭ) + ŘĬ (ŭ) + ŽĬ (ŭ) , where H̄c
(
Ĭ
)
∈ [0, 1] .

Definition 4. [15] Let the two SFNs are Ĭ1 =
(
ĔĬ1 (ŭ) , ŘĬ1

(ŭ) , ŽĬ1 (ŭ)
)

and

Ĭ2 =
(
ĔĬ2 (ŭ) , ŘĬ2

(ŭ) , ŽĬ2 (ŭ)
)

. Then, the rules for comparison can be defined as if

the score function i.e.,

· S̄c
(
Ĭ1

)
> S̄c

(
Ĭ2

)
, then Ĭ1 > Ĭ2, and if the score function i.e.,

· S̄c
(
Ĭ1

)
= S̄c

(
Ĭ2

)
, and H̄c

(
Ĭ1

)
> H̄c

(
Ĭ2

)
, then Ĭ1 > Ĭ2,

· if H̄c
(
Ĭ1

)
= H̄c

(
Ĭ2

)
, then Ĭ1 = Ĭ2.

3. New Sine Trigonometric Operational Laws (STOLs) for SFSs

We will define some operational laws for SFNs in this portion.

Definition 5. Let the SFN is Ĭ =
(
ĔĬ (ŭ) , ŘĬ (ŭ) , ŽĬ (ŭ)

)
. Then, we define a

STOLs of a Spherical fuzzy set as;
(3.1)

sin Ĭ =
{

sin
(π

2

(
ĔĬ (ŭ)

))
, 1− sin

(π
2

(
1− ŘĬ (ŭ)

))
, 1− sin

(π
2

(
1− ŽĬ (ŭ)

))}
.

From the above definition it is clear that the sin Ĭ is also SFS, and also satisfied
the following condition of the SFS as, the membership, neutral and nonmembership
degrees of SFS are define respectively

sin
(π

2

(
ĔĬ (ŭ)

))
: Ŭ→̇ [0, 1] , such that 0 ≤ sin

(π
2

(
ĔĬ (ŭ)

))
≤ 1,

1− sin
(π

2

(
1− ŘĬ (ŭ)

))
: Ŭ→̇ [0, 1] , such that 0 ≤ 1− sin

(π
2

(
1− ŘĬ (ŭ)

))
≤ 1,

1− sin
(π

2

(
1− ŽĬ (ŭ)

))
: Ŭ→̇ [0, 1] , such that 0 ≤ 1− sin

(π
2

(
1− ŽĬ (ŭ)

))
≤ 1,

Therefore,

sin Ĭ =
{

sin
(π

2

(
ĔĬ (ŭ)

))
, 1− sin

(π
2

(
1− ŘĬ (ŭ)

))
, 1− sin

(π
2

(
1− ŽĬ (ŭ)

))}
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is SFS.

Definition 6. Let Ĭ =
(
ĔĬ (ŭ) , ŘĬ (ŭ) , ŽĬ (ŭ)

)
be a SFN. Then,

(3.2)

sin Ĭ =
{

sin
(π

2

(
ĔĬ (ŭ)

))
, 1− sin

(π
2

(
1− ŘĬ (ŭ)

))
, 1− sin

(π
2

(
1− ŽĬ (ŭ)

))}
,

is known as sine trigonometric (ST ) operator and their value is known as sine trigono-
metric SFN.

Definition 7. Let the collection of SFNs are Ĭ =
(
ĔĬ (ŭ) , ŘĬ (ŭ) , ŽĬ (ŭ)

)
, Ĭ1 =(

ĔĬ1 (ŭ) , ŘĬ1
(ŭ) , ŽĬ1 (ŭ)

)
and Ĭ2 =

(
ĔĬ2 (ŭ) , ŘĬ2

(ŭ) , ŽĬ2 (ŭ)
)
. Then, we define the

following operational laws where Θ > 0 is any scalar.

1. sin Ĭ1⊕sin Ĭ2 =


√

1−
(

1− sin
(
π
2

(
Ĕ2
Ĭ1

(ŭ)
)))

.
(

1− sin
(
π
2

(
Ĕ2
Ĭ2

(ŭ)
)))

,(
1− sin

(
π
2

(
1− ŘĬ1

(ŭ)
)))

.
(
1− sin

(
π
2

(
1− ŘĬ2

(ŭ)
)))

,(
1− sin

(
π
2

(
1− ŽĬ1 (ŭ)

)))
.
(
1− sin

(
π
2

(
1− ŽĬ2 (ŭ)

)))
 ;

2. sin Ĭ1⊗sin Ĭ2 =



(
sin
(
π
2

(
ĔĬ1 (ŭ)

)))
.
(

sin
(
π
2

(
ĔĬ2 (ŭ)

)))
,√

1−
(

sin
(
π
2

(
1− Ř2

Ĭ1
(ŭ)
)))

.
(

sin
(
π
2

(
1− Ř2

Ĭ2
(ŭ)
)))

,√
1−

(
sin
(
π
2

(
1− Ž2

Ĭ1
(ŭ)
)))

.
(

sin
(
π
2

(
1− Ž2

Ĭ2
(ŭ)
)))


;

3. Ñ sin Ĭ =


√

1−
(

1− sin
(
π
2

(
Ĕ2
Ĭ

(ŭ)
)))Ñ

,
(
1− sin

(
π
2

(
1− ŘĬ (ŭ)

)))Ñ(
1− sin

(
π
2

(
1− ŽĬ (ŭ)

)))Ñ
 ;

4.
(

sin Ĭ
)Ñ

=


(

sin
(
π
2

(
ĔĬ (ŭ)

)))Ñ
,

√
1−

(
sin
(
π
2

(
1− Ř2

Ĭ
(ŭ)
)))Ñ√

1−
(

sin
(
π
2

(
1− Ž2

Ĭ
(ŭ)
)))Ñ

 ;

3.1. Some basic properties of STOLs of SFNs. Some fundamental properties
of sine trigonometric SFN are discussed in this portion, using the sine trigonometric
operational laws (STOLs) .

Theorem 1. Let a collection of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)
, where

Ĵ = 1, ..., 3. Then,

1. sin Ĭ1 ⊕ sin Ĭ2 = sin Ĭ2 ⊕ sin Ĭ1

2. sin Ĭ1 ⊗ sin Ĭ2 = sin Ĭ2 ⊗ sin Ĭ1

3.
(

sin Ĭ1 ⊕ sin Ĭ2

)
⊕ sin Ĭ3 = sin Ĭ1 ⊕

(
sin Ĭ2 ⊕ sin Ĭ3

)
4.
(

sin Ĭ1 ⊗ sin Ĭ2

)
⊗ sin Ĭ3 = sin Ĭ1 ⊗

(
sin Ĭ2 ⊗ sin Ĭ3

)
Proof. Here, we solve the first two parts using the STOLs (sine trigonometric

operation laws) define in Definition (7), and the proof of the other two part are
similar to the first parts, so we omit here, we get
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1.

sin Ĭ1 ⊕ sin Ĭ2 =

 sin
(
π
2

(
ĔĬ1 (ŭ)

))
,

1− sin
(
π
2

(
1− ŘĬ1

(ŭ)
))
,

1− sin
(
π
2

(
1− ŽĬ1 (ŭ)

))
⊕

 sin
(
π
2

(
ĔĬ2 (ŭ)

))
,

1− sin
(
π
2

(
1− ŘĬ2

(ŭ)
))
,

1− sin
(
π
2

(
1− ŽĬ2 (ŭ)

))


=


√

1−
(

1− sin
(
π
2

(
Ĕ2
Ĭ1

(ŭ)
)))

.
(

1− sin
(
π
2

(
Ĕ2
Ĭ2

(ŭ)
)))

,(
1− sin

(
π
2

(
1− ŘĬ1

(ŭ)
)))

.
(
1− sin

(
π
2

(
1− ŘĬ2

(ŭ)
)))

,(
1− sin

(
π
2

(
1− ŽĬ1 (ŭ)

)))
.
(
1− sin

(
π
2

(
1− ŽĬ2 (ŭ)

)))


=


√

1−
(

1− sin
(
π
2

(
Ĕ2
Ĭ2

(ŭ)
)))

.
(

1− sin
(
π
2

(
Ĕ2
Ĭ1

(ŭ)
)))

,(
1− sin

(
π
2

(
1− ŘĬ2

(ŭ)
)))

.
(
1− sin

(
π
2

(
1− ŘĬ1

(ŭ)
)))

,(
1− sin

(
π
2

(
1− ŽĬ2 (ŭ)

)))
.
(
1− sin

(
π
2

(
1− ŽĬ1 (ŭ)

)))


=

 sin
(
π
2

(
ĔĬ2 (ŭ)

))
,

1− sin
(
π
2

(
1− ŘĬ2

(ŭ)
))
,

1− sin
(
π
2

(
1− ŽĬ2 (ŭ)

))
⊕

 sin
(
π
2

(
ĔĬ1 (ŭ)

))
,

1− sin
(
π
2

(
1− ŘĬ1

(ŭ)
))
,

1− sin
(
π
2

(
1− ŽĬ1 (ŭ)

))


= sin Ĭ2 ⊕ sin Ĭ1

therefore, from the above

sin Ĭ1 ⊕ sin Ĭ2 = sin Ĭ2 ⊕ sin Ĭ1

2.

sin Ĭ1 ⊗ sin Ĭ2 =

 sin
(
π
2

(
ĔĬ1 (ŭ)

))
,

1− sin
(
π
2

(
1− ŘĬ1

(ŭ)
))
,

1− sin
(
π
2

(
1− ŽĬ1 (ŭ)

))
⊗

 sin
(
π
2

(
ĔĬ2 (ŭ)

))
,

1− sin
(
π
2

(
1− ŘĬ2

(ŭ)
))
,

1− sin
(
π
2

(
1− ŽĬ2 (ŭ)

))


=

 sin
(
π
2

(
ĔĬ1 (ŭ)

))
. sin

(
π
2

(
ĔĬ2 (ŭ)

))
,

√
1− sin

(
π
2

(
1− Ř2

Ĭ1
(ŭ)
))

. sin
(
π
2

(
1− Ř2

Ĭ2
(ŭ)
))
,√

1− sin
(
π
2

(
1− Ž2

Ĭ1
(ŭ)
))

. sin
(
π
2

(
1− Ž2

Ĭ2
(ŭ)
))



=

 sin
(
π
2

(
ĔĬ2 (ŭ)

))
. sin

(
π
2

(
ĔĬ1 (ŭ)

))
,

√
1− sin

(
π
2

(
1− Ř2

Ĭ2
(ŭ)
))

. sin
(
π
2

(
1− Ř2

Ĭ1
(ŭ)
))
,√

1− sin
(
π
2

(
1− Ž2

Ĭ2
(ŭ)
))

. sin
(
π
2

(
1− Ž2

Ĭ1
(ŭ)
))



=

 sin
(
π
2

(
ĔĬ2 (ŭ)

))
,

1− sin
(
π
2

(
1− ŘĬ2

(ŭ)
))
,

1− sin
(
π
2

(
1− ŽĬ2 (ŭ)

))
⊗

 sin
(
π
2

(
ĔĬ1 (ŭ)

))
,

1− sin
(
π
2

(
1− ŘĬ1

(ŭ)
))
,

1− sin
(
π
2

(
1− ŽĬ1 (ŭ)

))


= sin Ĭ1 ⊗ sin Ĭ2

therefore, from the above solution

sin Ĭ1 ⊗ sin Ĭ2 = sin Ĭ2 ⊗ sin Ĭ1

Theorem 2. Let a collection of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)

where

Ĵ = 1, 2. And also Ñ , Ñ1, Ñ2 > 0 be the real number. Then,
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1. Ñ
(

sin Ĭ1 ⊕ sin Ĭ2

)
= Ñ sin Ĭ1 ⊕ Ñ sin Ĭ2

2.
(

sin Ĭ1 ⊗ sin Ĭ2

)Ñ
=
(

sin Ĭ1

)Ñ
⊗
(

sin Ĭ2

)Ñ
3. Ñ1 sin Ĭ ⊕ Ñ2. sin Ĭ =

(
Ñ1 ⊕ Ñ2

)
sin Ĭ

4.
(

sin Ĭ
)Ñ1

⊗
(

sin Ĭ
)Ñ2

=
(

sin Ĭ
)Ñ1⊕Ñ2

5.

((
sin Ĭ

)Ñ1
)Ñ2

=
(

sin Ĭ
)Ñ1.Ñ2

Proof. Here, we will prove the first part of the above theorem only by using the
STOLs define in Definition (7), while rest can be proven similarly. As we know,

1.

sin Ĭ1 =
{

sin
(π

2

(
ĔĬ1 (ŭ)

))
, 1− sin

(π
2

(
1− ŘĬ1

(ŭ)
))
, 1− sin

(π
2

(
1− ŽĬ1 (ŭ)

))}
and

sin Ĭ2 =
{

sin
(π

2

(
ĔĬ2 (ŭ)

))
, 1− sin

(π
2

(
1− ŘĬ2

(ŭ)
))
, 1− sin

(π
2

(
1− ŽĬ2 (ŭ)

))}
by using the STOLs, we have

sin Ĭ1 ⊕ sin Ĭ2 =


√

1−
(

1− sin
(
π
2

(
Ĕ2
Ĭ1

(ŭ)
)))

.
(

1− sin
(
π
2

(
Ĕ2
Ĭ2

(ŭ)
)))

,(
1− sin

(
π
2

(
1− ŘĬ1

(ŭ)
)))

.
(
1− sin

(
π
2

(
1− ŘĬ2

(ŭ)
)))

,(
1− sin

(
π
2

(
1− ŽĬ1 (ŭ)

)))
.
(
1− sin

(
π
2

(
1− ŽĬ2 (ŭ)

)))


but it is given in statement of the Theorem that Ř > 0, again we use the
Definition (7), we have

Ñ
(

sin Ĭ1 ⊕ sin Ĭ2

)

=


√

1−
(

1− sin
(
π
2

(
Ĕ2
Ĭ1

(ŭ)
)))Ñ

.
(

1− sin
(
π
2

(
Ĕ2
Ĭ2

(ŭ)
)))Ñ

,(
1− sin

(
π
2

(
1− ŘĬ1

(ŭ)
)))Ñ

.
(
1− sin

(
π
2

(
1− ŘĬ2

(ŭ)
)))Ñ

,(
1− sin

(
π
2

(
1− ŽĬ1 (ŭ)

)))Ñ
.
(
1− sin

(
π
2

(
1− ŽĬ2 (ŭ)

)))Ñ


=


√

1−
(

1− sin
(
π
2

(
Ĕ2
Ĭ1

(ŭ)
)))Ñ

,(
1− sin

(
π
2

(
1− ŘĬ1

(ŭ)
)))Ñ

,(
1− sin

(
π
2

(
1− ŽĬ1 (ŭ)

)))Ñ
⊕


√

1−
(

1− sin
(
π
2

(
Ĕ2
Ĭ2

(ŭ)
)))Ñ

,(
1− sin

(
π
2

(
1− ŘĬ2

(ŭ)
)))Ñ

,(
1− sin

(
π
2

(
1− ŽĬ2 (ŭ)

)))Ñ


= Ñ sin Ĭ1 ⊕ Ñ sin Ĭ2

Corollary 1. Let a collection of two SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)

where Ĵ = 1, 2, such that ĔĬ1 (ŭ) ≥ ĔĬ2 (ŭ) , ŘĬ1
(ŭ) ≤ ŘĬ2

(ŭ) and ŽĬ1 (ŭ) ≤ ŽĬ2 (ŭ) .

Then show that sin Ĭ1 ≥ sin Ĭ2.
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Proof. Let Ĭ1 =
(
ĔĬ1 (ŭ) , ŘĬ1

(ŭ) , ŽĬ1 (ŭ)
)

and Ĭ2 =
(
ĔĬ2 (ŭ) , ŘĬ2

(ŭ) , ŽĬ2 (ŭ)
)

are

the SFN with condition Ĕ1 (ŭ) ≥ ĔĬ2 (ŭ) , since in the closed interval
[
0, π

2

]
, sin is

an increasing function, thus we have sin
(
π
2

(
ĔĬ1 (ŭ)

))
≥ sin

(
π
2

(
ĔĬ2 (ŭ)

))
. But also

given that Ř1 (ŭ) ≤ ŘĬ2
(ŭ) which implies that

(
1− ŘĬ1

(ŭ)
)
≥
(
1− ŘĬ2

(ŭ)
)
, since in

closed interval
[
0, π

2

]
, sine is an increasing function, thus we have sin

(
π
2

(
1− ŘĬ1

(ŭ)
))
≥

sin
(
π
2

(
1− ŘĬ2

(ŭ)
))

, which implies that 1−sin
(
π
2

(
1− ŘĬ1

(ŭ)
))
≤ 1−sin

(
π
2

(
1− ŘĬ2

(ŭ)
))
,

similarly ŽĬ1 (ŭ) ≤ ŽĬ2 (ŭ) which implies that
(
1− ŽĬ1 (ŭ)

)
≥
(
1− ŽĬ2 (ŭ)

)
, since in

closed interval
[
0, π

2

]
, sin is an increasing function, thus we have sin

(
π
2

(
1− ŽĬ1 (ŭ)

))
≥

sin
(
π
2

(
1− ŽĬ2 (ŭ)

))
, which implies that 1−sin

(
π
2

(
1− ŽĬ1 (ŭ)

))
≤ 1−sin

(
π
2

(
1− ŽĬ2 (ŭ)

))
,

hence, we get sin
(
π
2

(
ĔĬ1 (ŭ)

))
,

1− sin
(
π
2

(
1− ŘĬ1

(ŭ)
))
,

1− sin
(
π
2

(
1− ŽĬ1 (ŭ)

))
 ≥

 sin
(
π
2

(
ĔĬ2 (ŭ)

))
,

1− sin
(
π
2

(
1− ŘĬ2

(ŭ)
))
,

1− sin
(
π
2

(
1− ŽĬ2 (ŭ)

))


therefore, we get the required result by using the Definition (7),

sin Ĭ1 ≥ sin Ĭ2

4. Sine Trigonometric Aggregation Operators

we have described a number of aggregation operators in this portion of the article
on the basis of sine trigonometric operational laws (STOLs) .

4.1. Sine Trigonometric Averaging Aggregation Operator.

Definition 8. Let a collection of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)
,

where Ĵ = 1, · · · , n. Then, the mapping ST −SFWA : Ψn → Ψ, is known as the sine
trigonometric Spherical fuzzy weighted average (ST − SFWA) operator, if

(4.1) ST − SFWA
(
Ĭ1, · · · , Ĭn

)
= Θ1. sin Ĭ1 ⊕ · · · ⊕Θn. sin Ĭn.

Where the weighted vectors of sin ĬĴ

(
Ĵ = 1, · · · , n

)
are Θ

Ĵ
, which fulfilled the criteria

of ΘĴ > 0, and
∑n

Ĵ=1 ΘĴ = 1.

Theorem 3. Let a collection of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)

where

Ĵ = 1, · · · , n. Then, the aggregated value is also SFN by utilizing the ST − SFWA
operator, and is given by

(4.2) ST − SFWA
(
Ĭ1, · · · , Ĭn

)
=



√
1−

n∏̂
J=1

(
1− sin

(
π
2

(
Ĕ2
Ĵ

(ŭ)
)))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− ŘĴ (ŭ)

))ΘĴ ,

n∏̂
J=1

(
1− sin π

2

(
1− ŽĴ (ŭ)

))ΘĴ


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Proof. By using the process of mathematical induction, we prove the said Theorem.

Because, ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)

is SFN for each Ĵ , which implies that(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)
∈ [0, 1] and also

(
Ĕ2
ĬĴ

(ŭ) + Ř2
ĬĴ

(ŭ) + Ž2
ĬĴ

(ŭ)
)
≤ 1. The

following mathematical induction steps were then performed.

Step 1. Now for n = 2, we get ST − SFWA
(
Ĭ1, Ĭ2

)
= Θ1. sin Ĭ1 ⊕Θ2. sin Ĭ2

where

Θ1 sin Ĭ1 =


√

1−
(

1− sin
(
π
2

(
Ĕ2
Ĭ1

(ŭ)
)))Θ1

,
(
1− sin π

2

(
1− ŘĬ1

(ŭ)
))Θ1

,(
1− sin π

2

(
1− ŽĬ1 (ŭ)

))Θ1


and

Θ2 sin Ĭ2 =


√

1−
(

1− sin
(
π
2

(
Ĕ2
Ĭ2

(ŭ)
)))Θ2

,
(
1− sin π

2

(
1− ŘĬ2

(ŭ)
))Θ2

,(
1− sin π

2

(
1− ŽĬ2 (ŭ)

))Θ2


and hence, by using the Definition in (7), we get

Θ1 sin Ĭ1 ⊕Θ2 sin Ĭ2 =



√
1−

2∏̂
J=1

(
1− sin

(
π
2

(
Ĕ2
Ĵ

(ŭ)
)))ΘĴ

,

2∏̂
J=1

(
1− sin π

2

(
1− ŘĴ (ŭ)

))ΘĴ ,

2∏̂
J=1

(
1− sin π

2

(
1− ŽĴ (ŭ)

))ΘĴ


Step 2. Now say it’s true for n = k.

ST − SFWA
(
Ĭ1, Ĭ2

)
=



√
1−

k∏̂
J=1

(
1− sin

(
π
2

(
Ĕ2
Ĵ

(ŭ)
)))ΘĴ

,

k∏̂
J=1

(
1− sin π

2

(
1− ŘĴ (ŭ)

))ΘĴ ,

k∏̂
J=1

(
1− sin π

2

(
1− ŽĴ (ŭ)

))ΘĴ


Step 3. Now, we prove that this is true for n = k + 1

ST − SFWA
(
Ĭ1, · · · , Ĭk+1

)
= Θ1 sin Ĭ1 ⊕ · · · ⊕Θn sin Ĭn ⊕Θk+1 sin Ĭk+1

=



√
1−

k∏̂
J=1

(
1− sin

(
π
2

(
Ĕ2
Ĵ

(ŭ)
)))ΘĴ

,

k∏̂
J=1

(
1− sin π

2

(
1− ŘĴ (ŭ)

))ΘĴ ,

k∏̂
J=1

(
1− sin π

2

(
1− ŽĴ (ŭ)

))ΘĴ


⊕


√

1−
(

1− sin
(
π
2

(
Ĕ2
k+1 (ŭ)

)))Θk+1

,(
1− sin π

2

(
1− Řk+1 (ŭ)

))Θk+1
,(

1− sin π
2

(
1− Žk+1 (ŭ)

))Θk+1


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again, by using the Definition (7), we obtained

ST − SFWA
(
Ĭ1, · · · , Ĭk+1

)
=



√
1−

k+1∏̂
J=1

(
1− sin

(
π
2

(
Ĕ2
Ĵ

(ŭ)
)))ΘĴ

,

k+1∏̂
J=1

(
1− sin π

2

(
1− ŘĴ (ŭ)

))ΘĴ ,

k+1∏̂
J=1

(
1− sin π

2

(
1− ŽĴ (ŭ)

))ΘĴ


Hence, for the n = k + 1 holds. Then, the statement is valid for all n through the
principal of mathematical induction.

The ST − SFWA operators possess the following properties.

Property 1. If all collection of SFNs ĬĴ = Ĭ , where Ĭ is another SFN
(
Ĵ = 1, · · · , n

)
,

then

(4.3) ST − SFWA
(
Ĭ1, · · · , Ĭn

)
= sin Ĭ

Proof. Let Ĭ =
(
ĔĬ (ŭ) , ŘĬ (ŭ) , ŽĬ (ŭ)

)
is SFN , such that ĬĴ = Ĭ . Then, we get

by using Theorem (3),

ST − SFWA
(
Ĭ1, · · · , Ĭn

)
=



√
1−

n∏̂
J=1

(
1− sin

(
π
2

(
Ĕ2
Ĵ

(ŭ)
)))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− ŘĴ (ŭ)

))ΘĴ ,

n∏̂
J=1

(
1− sin π

2

(
1− ŽĴ (ŭ)

))ΘĴ



=



√
1−

n∏̂
J=1

(
1− sin

(
π
2

(
Ĕ2 (ŭ)

)))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− Ř (ŭ)

))ΘĴ ,

n∏̂
J=1

(
1− sin π

2

(
1− Ž (ŭ)

))ΘĴ



=


√

1−
(

1− sin
(
π
2

(
Ĕ2 (ŭ)

)))∑n
Ĵ=1

ΘĴ

,(
1− sin π

2

(
1− Ř (ŭ)

))∑n
Ĵ=1

ΘĴ ,(
1− sin π

2

(
1− Ž (ŭ)

))∑n
Ĵ=1

ΘĴ


=

(
sin
(
π
2

(
Ĕ (ŭ)

))
,
(
1− sin π

2

(
1− Ř (ŭ)

))(
1− sin π

2

(
1− Ž (ŭ)

)) )
= sin Ĭ

Property 2. If

ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)
,
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Ĭ−
Ĵ

=

(
min
Ĵ

{
ĔĴ (ŭ)

}
,max

Ĵ

{
ŘĴ (ŭ)

}
,max

Ĵ

{
ŽĴ (ŭ)

})
and

Ĭ+

Ĵ
=

(
max
Ĵ

{
ĔĴ (ŭ)

}
,min

Ĵ

{
ŘĴ (ŭ)

}
,min

Ĵ

{
ŽĴ (ŭ)

})
,

where Ĵ = 1, · · · , n, be SFNs, then

(4.4) sin Ĭ− ≤ ST − SFWA
(
Ĭ1, · · · , Ĭn

)
≤ sin Ĭ+.

Proof. Since for any Ĵ , min
Ĵ

{
ĔĴ (ŭ)

}
≤ ĔĴ (ŭ) ≤ max

Ĵ

{
ĔĴ (ŭ)

}
, min

Ĵ

{
ŘĴ (ŭ)

}
≤

ŘĴ (ŭ) ≤ max
Ĵ

{
ŘĴ (ŭ)

}
and min

Ĵ

{
ŽĴ (ŭ)

}
≤ ŽĴ (ŭ) ≤ max

Ĵ

{
ŽĴ (ŭ)

}
. This implies

that Ĭ− ≤ ĬĴ ≤ Ĭ+.Assume that, ST−SFWA
(
Ĭ1, · · · , Ĭn

)
= sin Ĭ =

(
ĔĬ (ŭ) , ŘĬ (ŭ) ,

ŽĬ (ŭ)
)
, sin Ĭ+ =

(
ĔĬ+ (ŭ) , ŘĬ− (ŭ) , ŽĬ− (ŭ)

)
and sin Ĭ− =

(
ĔĬ− (ŭ) , ŘĬ+ (ŭ) , ŽĬ+ (ŭ)

)
.

Then, by the monotonicity of the sine trigonometric function, we have

ĔĬ (ŭ) =

√√√√1−
n∏
Ĵ=1

(
1− sin

(π
2

(
Ĕ2
Ĵ

(ŭ)
)))ΘĴ ≥

√√√√1−
n∏
Ĵ=1

(
1− sin

(
π

2
min
Ĵ

{
Ĕ2
Ĵ

(ŭ)
}))ΘĴ

=

√
1−

(
1− sin

(π
2

min
{
Ĕ2
Ĵ

(ŭ)
}))∑n

Ĵ=1
ΘĴ

= sin
(π

2
min

{
ĔĴ (ŭ)

})
= ĔĬ− (ŭ)

ŘĬ (ŭ) =

n∏
Ĵ=1

(
1− sin

(π
2

(
1− ŘĴ (ŭ)

)))ΘĴ ≥
n∏
Ĵ=1

(
1− sin

(
π

2

(
1−min

Ĵ

{
ŘĴ (ŭ)

})))ΘĴ

=
(

1− sin
(π

2

(
1−min

{
ŘĴ (ŭ)

})))∑n
Ĵ=1

Θ
Ĵ

=

(
1− sin

(
π

2

(
1−min

Ĵ

{
ŘĴ (ŭ)

})))
= ŘĬ− (ŭ)

ŽĬ (ŭ) =

n∏
Ĵ=1

(
1− sin

(π
2

(
1− ŽĴ (ŭ)

)))ΘĴ ≥
n∏
Ĵ=1

(
1− sin

(
π

2

(
1−min

Ĵ

{
ŽĴ (ŭ)

})))ΘĴ

=
(

1− sin
(π

2

(
1−min

{
ŽĴ (ŭ)

})))∑n
Ĵ=1

Θ
Ĵ

=

(
1− sin

(
π

2

(
1−min

Ĵ

{
ŽĴ (ŭ)

})))
= ŽĬ− (ŭ)
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and also

ĔĬ (ŭ) =

√√√√1−
n∏
Ĵ=1

(
1− sin

(π
2

(
Ĕ2
Ĵ

(ŭ)
)))ΘĴ ≤

√√√√1−
n∏
Ĵ=1

(
1− sin

(
π

2
max
Ĵ

{
Ĕ2
Ĵ

(ŭ)
}))ΘĴ

=

√
1−

(
1− sin

(π
2

max
{
Ĕ2
Ĵ

(ŭ)
}))∑n

Ĵ=1
ΘĴ

= sin

(
π

2
max
Ĵ

{
ĔĴ (ŭ)

})
= ĔĬ+ (ŭ)

ŘĬ (ŭ) =

n∏
Ĵ=1

(
1− sin

(π
2

(
1− ŘĴ (ŭ)

)))ΘĴ ≤
n∏
Ĵ=1

(
1− sin

(
π

2

(
1−max

Ĵ

{
ŘĴ (ŭ)

})))ΘĴ

=
(

1− sin
(π

2

(
1−max

{
ŘĴ (ŭ)

})))∑n
Ĵ=1

Θ
Ĵ

=

(
1− sin

(
π

2

(
1−max

Ĵ

{
ŘĴ (ŭ)

})))
= ŘĬ+ (ŭ)

ŽĬ (ŭ) =

n∏
Ĵ=1

(
1− sin

(π
2

(
1− ŽĴ (ŭ)

)))ΘĴ ≥
n∏
Ĵ=1

(
1− sin

(
π

2

(
1−max

Ĵ

{
ŽĴ (ŭ)

})))ΘĴ

=
(

1− sin
(π

2

(
1−max

{
ŽĴ (ŭ)

})))∑n
Ĵ=1

Θ
Ĵ

=

(
1− sin

(
π

2

(
1−max

Ĵ

{
ŽĴ (ŭ)

})))
= ŽĬ+ (ŭ)

Based on score function Definition (3), we get

Sc
(

sin Ĭ
)

= ĔĬ (ŭ)− ŘĬ (ŭ)− ŽĬ (ŭ) ≤ ĔĬ+ (ŭ)− ŘĬ− (ŭ)− ŽĬ− (ŭ) = Sc
(

sin Ĭ+
)

Sc
(

sin Ĭ
)

= ĔĬ (ŭ)− ŘĬ (ŭ)− ŽĬ (ŭ) ≥ ĔĬ− (ŭ)− ŘĬ+ (ŭ)− ŽĬ+ (ŭ) = Sc
(

sin Ĭ−
)

Hence, Sc
(

sin Ĭ−
)
≤ Sc

(
sin Ĭ

)
≤ Sc

(
sin Ĭ+

)
. Now, we have explain three cases:

Case 1. If Sc
(

sin Ĭ−
)
≤ Sc

(
sin Ĭ

)
≤ Sc

(
sin Ĭ+

)
, then result holds.

Case 2. If Sc
(

sin Ĭ+
)

= Sc
(

sin Ĭ
)
, then ĔĬ (ŭ) − ŘĬ (ŭ) − ŽĬ (ŭ) = ĔĬ+ (ŭ) −

ŘĬ+ (ŭ)−ŽĬ+ (ŭ) , which implies that ĔĬ (ŭ) = ĔĬ+ (ŭ) , ŘĬ (ŭ) = ŘĬ+ (ŭ) , and ŽĬ (ŭ) =

ŽĬ+ (ŭ) and H
(

sin Ĭ+
)

= H
(

sin Ĭ
)
.

Case 3. If Sc
(

sin Ĭ−
)

= Sc
(

sin Ĭ
)
, then ĔĬ (ŭ) − ŘĬ (ŭ) − ŽĬ (ŭ) = ĔĬ− (ŭ) −

ŘĬ− (ŭ) − ŽĬ− (ŭ) , which implies that ĔĬ (ŭ) = ĔĬ− (ŭ) , ŘĬ (ŭ) = ŘĬ− (ŭ) , and

ŽĬ (ŭ) = ŽĬ− (ŭ) and H
(

sin Ĭ−
)

= H
(

sin Ĭ
)
, therefore, by combining all these

cases, we get

sin Ĭ− ≤ ST − SFWA
(
Ĭ1, · · · , Ĭn

)
≤ sin Ĭ+.
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Property 3. Let the collection of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)

and

Ĭ∗
Ĵ

=
(
Ĕ∗
ĬĴ

(ŭ) , Ř∗
ĬĴ

(ŭ) , Ž∗
ĬĴ

(ŭ)
)
, where Ĵ = 1, · · · , n. If ĔĬĴ

(ŭ) ≤ Ĕ∗
ĬĴ

(ŭ) , ŘĬĴ
(ŭ) ≥

Ř∗
ĬĴ

(ŭ) , and ŽĬĴ
(ŭ) ≥ Ž∗

ĬĴ
(ŭ) , then

(4.5) ST − SFWA
(
Ĭ1, · · · , Ĭn

)
≤ ST − SFWA

(
Ĭ∗1 , · · · , Ĭ∗n

)
Proof. Follow from the above, so we omit here.

Definition 9. A sine trigonometric SF ordered weighted average operator

(ST − SFOWA) is a mapping ST − SFOWA : Ψn → Ψ such that weighted vector

Θ = (Θ1, · · · ,Θn)T , which fulfilled the criteria of ΘĴ > 0 and
∑n

Ĵ=1 ΘĴ = 1.

(4.6) ST − SFOWA = Θ1 sin ĬŌ(1) ⊕ · · · ⊕Θn sin ĬŌ(n).

Where (1, · · · , n) is the permutation Ō, such that ĬŌ(Ĵ−1) ≥ ĬŌ(Ĵ) for any Ĵ .

Theorem 4. Let a collection of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)
, where

Ĵ = 1, · · · , n. Then, by utilized the operator i.e., ST −SFOWA the aggregated value
is also SFN and is given by,
(4.7)

ST − SFOWA
(
Ĭ1, · · · , Ĭn

)
=



√
1−

n∏̂
J=1

(
1− sin

(
π
2

(
Ĕ2
Ō(Ĵ)

(ŭ)

)))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− ŘŌ(Ĵ) (ŭ)

))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− ŽŌ(Ĵ) (ŭ)

))ΘĴ


Proof. Proof is same to Theorem (3), so proof is ignore here.

Definition 10. A sine trigonometric SF hybrid average operator (ST − SFHA)

is a mapping ST−SFHA : Ψn → Ψ such that the associate vectors ξ = (ξ1, ξ2, · · · , ξn)T

which fulfilled the criteria of ξĴ > 0 and
∑n

Ĵ=1 ξĴ = 1.

(4.8) ST − SFHA = ξ1 sin ÏŌ(1) ⊕ · · · ⊕ ξn sin ÏŌ(n).

Where (1, · · · , n) is the permutation of Ō, as ĬŌ(Ĵ−1) ≥ ĬŌ(Ĵ) for any Ĵ and ÏĴ =

nΘĴ ĬĴ

Theorem 5. Let a collection of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)

where

Ĵ = 1, · · · , n. Then, the aggregated value is also SFN by utilized the operator ST −
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SFHA and is given by,

(4.9) ST − SFHA
(
Ĭ1, · · · , Ĭn

)
=



√
1−

n∏̂
J=1

(
1− sin

(
π
2

(
E̊2
Ō(Ĵ)

(ŭ)

)))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− R̊Ō(Ĵ) (ŭ)

))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− Z̊Ō(Ĵ) (ŭ)

))ΘĴ


Proof. Proof is same to Theorem (3), so proof is ignore here.

4.2. Sine Trigonometric Geometric Aggregation Operator.

Definition 11. Let a collection of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)
,

where Ĵ = 1, · · · , n. Then, the mapping ST −SFWG : Ψn → Ψ, is known as the sine
trigonometric Spherical fuzzy weighted geometric (ST − SFWG) operator, if

(4.10) ST − SFWG
(
Ĭ1, · · · , Ĭn

)
=
(

sin Ĭ1

)Θ1

⊗ ...⊗
(

sin Ĭn

)Θ1

.

Where the weight vectors are Θ = (Θ1, · · · ,Θn)T of sin ĬĴ

(
Ĵ = 1, · · · , n

)
, which

fulfilled the criteria of ΘĴ > 0, and
∑n

Ĵ=1 ΘĴ = 1.

Theorem 6. Let a collection of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)
, where

Ĵ = 1, · · · , n. Then, the aggregated value is also SFN by using the ST − SFWG
operator, and is given by,

(4.11) ST − SFWG
(
Ĭ1, · · · , Ĭn

)
=



n∏̂
J=1

(
sin
(
π
2

(
ĔĴ (ŭ)

)))ΘĴ

,√
1−

n∏̂
J=1

(
sin π

2

(
1− Ř2

Ĵ
(ŭ)
))ΘĴ

,√
1−

n∏̂
J=1

(
sin π

2

(
1− Ž2

Ĵ
(ŭ)
))ΘĴ


Proof. Proof is similar to Theorem (3), so procedure is ignore here.

The ST − SFWG operators possess the following properties.

Property 1. If all collection of SFNs ĬĴ = Ĭ , where Ĭ is another SFN
(
Ĵ = 1, · · · , n

)
,

then

(4.12) ST − SFWG
(
Ĭ1, · · · , Ĭn

)
= sin Ĭ

Property 2. If ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)
, where Ĵ = 1, · · · , n, Ĭ−

Ĵ
=(

min
Ĵ

{
ĔĴ (ŭ)

}
,max

Ĵ

{
ŘĴ (ŭ)

}
,max

Ĵ

{
ŽĴ (ŭ)

})
and Ĭ+

Ĵ
=

(
max
Ĵ

{
ĔĴ (ŭ)

}
,min

Ĵ

{
ŘĴ (ŭ)

}
,

min
Ĵ

{
ŽĴ (ŭ)

})
be SFNs, then

(4.13) sin Ĭ− ≤ ST − SFWG
(
Ĭ1, · · · , Ĭn

)
≤ sin Ĭ+.
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Property 3. Let the collection of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)

and

Ĭ∗
Ĵ

=
(
Ĕ∗
ĬĴ

(ŭ) , Ř∗
ĬĴ

(ŭ) , Ž∗
ĬĴ

(ŭ)
)
, where Ĵ = 1, · · · , n. If ĔĬĴ

(ŭ) ≤ Ĕ∗
ĬĴ

(ŭ) , ŘĬĴ
(ŭ) ≥

Ř∗
ĬĴ

(ŭ) , and ŽĬĴ
(ŭ) ≥ Ž∗

ĬĴ
(ŭ) . Then,

(4.14) ST − SFWG
(
Ĭ1, · · · , Ĭn

)
≤ ST − SFWA

(
Ĭ∗1 , · · · , Ĭ∗n

)
Definition 12. A ST − SFOWG is a mapping from Ψn to Ψ such that the

weighted vector Θ = (Θ1, · · · ,Θn)T which fulfilled the criteria of ΘĴ > 0 and
∑n

Ĵ=1 ΘĴ =
1.

(4.15) ST − SFOWG =
(

sin ĬŌ(1)

)Θ1

⊕ · · · ⊕
(

sin ĬŌ(n)

)Θn

.

Where Ō is the permutation of (1, · · · , n) as ĬŌ(Ĵ−1) ≥ ĬŌ(Ĵ) for any Ĵ .

Theorem 7. Let a family of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)
, where

Ĵ = 1, · · · , n. Then, the aggregated value is also SFN by using the ST − SFOWG
operator, and is given by

(4.16) ST − SFOWG
(
Ĭ1, · · · , Ĭn

)
=



n∏̂
J=1

(
sin
(
π
2

(
ĔŌ(Ĵ) (ŭ)

)))ΘĴ

,√
1−

n∏̂
J=1

(
sin π

2

(
1− Ř2

Ō(Ĵ)
(ŭ)

))ΘĴ

,√
1−

n∏̂
J=1

(
sin π

2

(
1− Ž2

Ō(Ĵ)
(ŭ)

))ΘĴ


Proof. Similar to Theorem (3)

Definition 13. A sine trigonometric Spherical fuzzy hybrid geometric operator
(ST − SFHG) is a mapping ST − SFHG : Ψn → Ψ, such that the associate vectors

are ξ = (ξ1, ξ2, · · · , ξn)T , which fulfilled the condition ξĴ > 0 and
∑n

Ĵ=1 ξĴ = 1.

(4.17) ST − SFHG =
(

sin ÏŌ(1)

)ξ1
⊗ · · · ⊗

(
sin ÏŌ(n)

)ξn
.

Where Ō is the permutation of (1, · · · , n) as ĬŌ(Ĵ−1) ≥ ĬŌ(Ĵ) for any Ĵ and ÏĴ = nΘĴ ĬĴ

Theorem 8. Let a family of SFNs are ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)
, where

Ĵ = 1, · · · , n. Then, by utilized the operator i.e., ST − SFHG the aggregated value
is also SFN and is given by

(4.18) ST − SFHG
(
Ĭ1, · · · , Ĭn

)
=



n∏̂
J=1

(
sin
(
π
2

(
E̊Ō(Ĵ) (ŭ)

)))ΘĴ

,√
1−

n∏̂
J=1

(
sin π

2

(
1− R̊2

Ō(Ĵ)
(ŭ)

))ΘĴ

,√
1−

n∏̂
J=1

(
sin π

2

(
1− Z̊2

Ō(Ĵ)
(ŭ)

))ΘĴ


Proof. Proof is same to Theorem:(3), so proof is ignore here.
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As similar to ST − SFWA,ST − SFOWA, ST − SFHA, ST − SFWG, ST −
SFOWG and ST − SFHG operators satisfy the properties such as Idempotency,
Boundedness, Monotonicity.

5. Fundamental properties of the proposed Aggregation Operators

In this section of the paper, we discuss many relation between the proposed AOs
and also studied their fundamental properties as given,

Theorem 9. For any two SFNs i.e., Ĭ1 and Ĭ2 we have sin Ĭ1⊕sin Ĭ2 ≥ sin Ĭ1⊗sin Ĭ2

Proof. Let the two SFNs are Ĭ1 =
(
ĔĬ1 (ŭ) , ŘĬ1

(ŭ) , ŽĬ1 (ŭ)
)

and Ĭ2 =
(
ĔĬ2 (ŭ) ,

ŘĬ2
(ŭ) , ŽĬ2 (ŭ)

)
. Then, by using definition (6), (7), we get

sin Ĭ1 ⊕ sin Ĭ2

=


√

1−
(

1− sin
(
π
2

(
Ĕ2
Ĭ1

(ŭ)
)))

.
(

1− sin
(
π
2

(
Ĕ2
Ĭ2

(ŭ)
)))

,(
1− sin

(
π
2

(
1− ŘĬ1

(ŭ)
)))

.
(
1− sin

(
π
2

(
1− ŘĬ2

(ŭ)
)))

,(
1− sin

(
π
2

(
1− ŽĬ1 (ŭ)

)))
.
(
1− sin

(
π
2

(
1− ŽĬ2 (ŭ)

)))


=


√

1−
2∏̂

J=1

(
1− sin

(
π
2

(
Ĕ2
ĬĴ

(ŭ)
)))

,
2∏̂

J=1

(
1− sin

(
π
2

(
1− ŘĬĴ

(ŭ)
)))

,

2∏̂
J=1

(
1− sin

(
π
2

(
1− ŽĬĴ (ŭ)

)))


and also

sin Ĭ1 ⊗ sin Ĭ2 =



(
sin
(
π
2

(
ĔĬ1 (ŭ)

)))
.
(

sin
(
π
2

(
ĔĬ2 (ŭ)

)))
,√

1−
(

sin
(
π
2

(
1− Ř2

Ĭ1
(ŭ)
)))

.
(

sin
(
π
2

(
1− Ř2

Ĭ2
(ŭ)
)))

,√
1−

(
sin
(
π
2

(
1− Ž2

Ĭ1
(ŭ)
)))

.
(

sin
(
π
2

(
1− Ž2

Ĭ2
(ŭ)
)))



=


2∏̂

J=1

(
sin
(
π
2

(
ĔĬĴ

(ŭ)
)))

,

√
1−

2∏̂
J=1

(
sin
(
π
2

(
1− Ř2

ĬĴ
(ŭ)
)))

,√
1−

2∏̂
J=1

(
sin
(
π
2

(
1− Ž2

ĬĴ
(ŭ)
)))


since for any two non-negative real number a and b, their arithmetic mean is greater
than or equal to their geometric mean therefore, a+b

2
≥ ab which follows that a+ b−

ab ≥ ab. Thus by taking a = sin
(
π
2

(
ĔĬ1 (ŭ)

))
and b = sin

(
π
2

(
ĔĬ2 (ŭ)

))
, we have 1−(

1− sin π
2

(
ĔĬ1 (ŭ)

))
.
(

1− sin π
2

(
Ĕ2 (ŭ)

))
≥
(

sin π
2

(
ĔĬ1 (ŭ)

))
.
(

sin π
2

(
ĔĬ2 (ŭ)

))
which

further gives that 1−
2∏̂

J=1

(
1− sin π

2

(
ĔĬĴ

(ŭ)
))
≥

2∏̂
J=1

(
sin π

2

(
ĔĬ1 (ŭ)

))
.
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Similarly, we have obtained the other two as
2∏

Ĵ=1

(
1− sin

(π
2

(
1− ŘĬĴ

(ŭ)
)))

≤ 1−
2∏

Ĵ=1

(
sin
(π

2

(
1− ŘĬĴ

(ŭ)
)))

and
2∏

Ĵ=1

(
1− sin

(π
2

(
1− ŽĬĴ (ŭ)

)))
≤ 1−

2∏
Ĵ=1

(
sin
(π

2

(
1− ŽĬĴ (ŭ)

)))
.

Hence, by using Definition (7), we get

sin Ĭ1 ⊕ sin Ĭ2 ≥ sin Ĭ1 ⊗ sin Ĭ2

Theorem 10. For any SFNs i.e., Ĭ and positive real number τ̇ > 0, τ̇ sin Ĭ ≥(
sin Ĭ

)τ̇
⇐⇒ τ̇ ≥ 1 and τ̇ sin Ĭ ≤

(
sin Ĭ

)τ̇
⇐⇒ 0 < τ̇ ≤ 1.

Proof. Proof is same to Theorem (9)

Lemma 1. For aĴ ≥ 0 and bĴ ≥ 0, then we have
n∏̂
J=1

a
bĴ
Ĵ
≤

n∑̂
J=1

bĴ .aĴ and the

equality holds iff a1 = a2 = · · · = an.

Lemma 2. Let 0 ≤ a, b ≤ 1, and 0 ≤ x ≤ 1, then 0 ≤ ax+ b (1− x) ≤ 1.

Lemma 3. Let 0 ≤ a, b ≤ 1, and
√

1− (1− a2) (1− b2) ≥ ab.

Theorem 11. For any SFNs ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)
, the operators

ST − SFWA and ST − SFWG satisfy the inequality

(5.1) ST − SFWA
(
Ĭ1, · · · , Ĭn

)
≥ ST − SFWG

(
Ĭ1, · · · , Ĭn

)
.

Where equality holds iff Ĭ1 = Ĭ2 = · · · = Ĭn.

Proof. For n, SFNs ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)

and normalized weight vector

ΘĴ > 0, we have

ST − SFWA
(
Ĭ1, · · · , Ĭn

)
=



√
1−

n∏̂
J=1

(
1− sin

(
π
2

(
Ĕ2
ĬĴ

(ŭ)
)))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− ŘĬĴ

(ŭ)
))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− ŽĬĴ (ŭ)

))ΘĴ


and

ST − SFWG
(
Ĭ1, · · · , Ĭn

)
=



n∏̂
J=1

(
sin
(
π
2

(
ĔĬĴ

(ŭ)
)))ΘĴ

,√
1−

n∏̂
J=1

(
sin π

2

(
1− Ř2

ĬĴ
(ŭ)
))ΘĴ

,√
1−

n∏̂
J=1

(
sin π

2

(
1− Ž2

ĬĴ
(ŭ)
))ΘĴ


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For ΘĴ > 0, sin
(
π
2

(
ĔĴ

))
∈ [0, 1] and by the Lemma (1), we get

1−
n∏
Ĵ=1

(
1− sin

(π
2

(
ĔĬĴ

(ŭ)
)))ΘĴ ≥ 1−

n∑
Ĵ=1

ΘĴ

(
1− sin

(π
2

(
ĔĬĴ

(ŭ)
)))

≥ 1− 1 +
n∑
Ĵ=1

ΘĴ

(
sin
(π

2

(
ĔĬĴ

(ŭ)
)))

≥
n∏
Ĵ=1

(
sin
(π

2

(
ĔĬĴ

(ŭ)
)))ΘĴ

which implies that√√√√1−
n∏
Ĵ=1

(
1− sin

(π
2

(
Ĕ2
ĬĴ

(ŭ)
)))ΘĴ ≥

√√√√ n∏
Ĵ=1

(
sin
(π

2

(
Ĕ2
ĬĴ

(ŭ)
)))ΘĴ

.

For neutral and negative membership component, we have
n∏
Ĵ=1

(
1− sin

π

2

(
1− ŘĬĴ

(ŭ)
))ΘĴ ≤

n∑
Ĵ=1

ΘĴ .
(

1− sin
π

2

(
1− ŘĬĴ

(ŭ)
))

≤ 1−
n∑
Ĵ=1

ΘĴ .
(

sin
π

2

(
1− ŘĬĴ

(ŭ)
))
≤ 1−

n∏
Ĵ=1

(
sin

π

2

(
1− ŘĬĴ

(ŭ)
))ΘĴ

which implies that
n∏
Ĵ=1

(
1− sin

π

2

(
1− ŘĬĴ

(ŭ)
))ΘĴ ≤ 1−

n∏
Ĵ=1

(
sin

π

2

(
1− ŘĬĴ

(ŭ)
))ΘĴ

.

similar the negative grade, as
n∏
Ĵ=1

(
1− sin

π

2

(
1− ŽĬĴ (ŭ)

))ΘĴ ≤
n∑
Ĵ=1

ΘĴ .
(

1− sin
π

2

(
1− ŽĬĴ (ŭ)

))

≤ 1−
n∑
Ĵ=1

ΘĴ .
(

sin
π

2

(
1− ŽĬĴ (ŭ)

))
≤ 1−

n∏
Ĵ=1

(
sin

π

2

(
1− ŽĬĴ (ŭ)

))ΘĴ

which implies that
n∏
Ĵ=1

(
1− sin

π

2

(
1− ŽĬĴ (ŭ)

))ΘĴ ≤ 1−
n∏
Ĵ=1

(
sin

π

2

(
1− ŽĬĴ (ŭ)

))ΘĴ

.

Hence, from all the above Equations, we get

ST − SFWA
(
Ĭ1, · · · , Ĭn

)
≥ ST − SFWG

(
Ĭ1, · · · , Ĭn

)
.

Theorem 12. Let ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)(

Ĵ = 1, · · · , n
)

and Ĭ =(
ĔĬ (ŭ) , ŘĬ (ŭ) , ŽĬ (ŭ)

)
are SFNs. Then,

ST − SFWA
(
Ĭ1 ⊕ · · · ⊕ Ĭn

)
≥ ST − SFWA

(
Ĭ1 ⊗ · · · ⊗ Ĭn

)
(5.2)

ST − SFWG
(
Ĭ1 ⊕ · · · ⊕ Ĭn

)
≥ ST − SFWG

(
Ĭ1 ⊗ · · · ⊗ Ĭn

)
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Proof. Here, we prove only the first part, while the other parts can be deduced sim-

ilarly, for this, let ĬĴ =
(
ĔĬĴ

(ŭ) , ŘĬĴ
(ŭ) , ŽĬĴ

(ŭ)
)

and Ĭ =
(
ĔĬ (ŭ) , ŘĬ (ŭ) , ŽĬ (ŭ)

)
,

since both ĬĴ and Ĭ are SFNs.

ST − SFWA
(
Ĭ1 ⊕ · · · ⊕ Ĭn ⊕ Ĭ

)

=



√
1−

n∏̂
J=1

(
1− sin

(
π
2

(
1−

(
1− Ĕ2

ĬĴ
(ŭ)
)(

1− Ĕ2
Ĭ

(ŭ)
))))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− ŘĬĴ

(ŭ) .ŘĬ (ŭ)
))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− ŽĬĴ (ŭ) .ŽĬ (ŭ)

))ΘĴ


and

ST − SFWA
(
Ĭ1 ⊗ · · · ⊗ Ĭn ⊗ Ĭ

)

=


1−

n∏̂
J=1

(
1− sin

(
π
2
ĔĬĴ

(ŭ) .ĔĬ (ŭ)
))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− ŘĬĴ

(ŭ)
)
.
(
1− ŘĬ (ŭ)

))ΘĴ

,

n∏̂
J=1

(
1− sin π

2

(
1− ŽĬĴ (ŭ)

)
.
(
1− ŽĬ (ŭ)

))ΘĴ


For ĔĬĴ

(ŭ) , ĔĬ (ŭ) ∈ [0, 1] and Lemma (3), we have

√
1−

(
1− Ĕ2

ĬĴ
(ŭ)
)(

1− Ĕ2
Ĭ

(ŭ)
)
≥

ĔĬĴ
(ŭ) .ĔĬ (ŭ) . Since ”sine” is an increasing function, we get

sin
(π

2

(
1−

(
1− ĔĬĴ (ŭ)

)(
1− ĔĬ (ŭ)

)))
≥ sin

π

2

(
ĔĬĴ

(ŭ) .ĔĬ (ŭ)
)
,

which gives that

⇒
√

1− sin
(π

2

(
1−

(
1− Ĕ2

ĬĴ
(ŭ)
)(

1− Ĕ2
Ĭ

(ŭ)
)))

≤
√

1− sin
π

2

(
Ĕ2
ĬĴ

(ŭ) .Ĕ2
Ĭ

(ŭ)
)

⇒

√√√√ n∏
Ĵ=1

(
1− sin

(π
2

(
1−

(
1− Ĕ2

ĬĴ
(ŭ)
)(

1− Ĕ2
Ĭ

(ŭ)
))))ΘĴ

≤

√√√√ n∏
Ĵ=1

(
1− sin

π

2

(
Ĕ2
ĬĴ

(ŭ) .Ĕ2
Ĭ

(ŭ)
))ΘĴ

⇒

√√√√1−
n∏
Ĵ=1

(
1− sin

(π
2

(
1−

(
1− Ĕ2

ĬĴ
(ŭ)
)(

1− Ĕ2
Ĭ

(ŭ)
))))ΘĴ

≥

√√√√1−
n∏
Ĵ=1

(
1− sin

π

2

(
Ĕ2
ĬĴ

(ŭ) .Ĕ2
Ĭ

(ŭ)
))ΘĴ
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Similarly the neutral and negative grade, we get

n∏
Ĵ=1

(
1− sin

π

2

(
1− ŘĬĴ (ŭ) .ŘĬ (ŭ)

))ΘĴ ≤
n∏
Ĵ=1

(
1− sin

π

2

(
1− ŘĬĴ (ŭ)

)
.
(
1− ŘĬ (ŭ)

))ΘĴ
,

n∏
Ĵ=1

(
1− sin

π

2

(
1− ŽĬĴ (ŭ) .ŽĬ (ŭ)

))ΘĴ ≤
n∏
Ĵ=1

(
1− sin

π

2

(
1− ŽĬĴ (ŭ)

)
.
(
1− ŽĬ (ŭ)

))ΘĴ

Therefore, from the above equation we get

ST − SFWA
(
Ĭ1 ⊕ · · · ⊕ Ĭn

)
≥ ST − SFWA

(
Ĭ1 ⊗ · · · ⊗ Ĭn

)

6. Decision Making Approach

This section provides a strategy, preceded by an example, to solve the DM problem.
For this reason, let it be the m alternative (γ̂1, · · · , γ̂m) that is evaluated by a group of

experts under the n different attribute
(
Ğ1, · · · , Ğn

)
. That expert test γ̂i and Ğj and

gives their preferences in terms of SFNs α
(κ)
ij =

(
Ĕ

(κ)
ij , Ř

(κ)
ij , Ž

(κ)
ij

)
, where i = 1 (1)m;

j = 1 (1)n; κ = 1 (1) d. Then, the value of every alternative γ̂i with the Ğj is shown
as;

γ̂i =
[(
Ğ1, αi1

)
,
(
Ğ2, αi2

)
, · · · ,

(
Ğn, αin

)]
,

let Θj > 0 be the normalized weights of attribute Ğj. The following steps are taken
to calculate the best choice.

Step 1: In terms of decision matrix, summarize the values of each alternative

D̂(κ) = α
(κ)
ij with SFS information.

Step 2: Aggregate the different preferences α
(κ)
ij , κ = 1, · · · , d into αij =

(
Ĕij, Řij, Žij

)
utilizing either ST − SFWA or ST − SFWG by operators.

Step 3: Establish the normalized decision matrix R = (rij) from D̂ = (αij) , where
rij is computed as

rij =


(
Ĕij, Řij, Žij

)
if benefit type attributes(

Žij, Řij, Ĕij

)
if cost type attributes

Step 4: If the weights of the attributes are known as before, then use them.
Otherwise, we measure these by using the entropy principle. For this, the information
entropy of attribute Ğj is given as;
(6.1)

Ξj =
1(√

2− 1
)
m

m∑
j=1

[
sin
(π

4

(
1 + Ĕij − Řij − Žij

))
+ sin

(π
4

(
1− Ĕij + Řij + Žij

))
− 1
]
,

where 1

(
√

2−1)m
is a constant for assuring 0 ≤ Ξj ≤ 1.
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Based on it, the weights of the attributes are obtained as ω = (ω1, · · · , ωn) , where

(6.2) ωj =
1− Ξj

n−
n∑
j=1

Ξj

Step 5: With weight vector ω and using the proposed ST-SFOWA or ST-SFOWG
aggregation operators, the collective values ri for each alternative γ̂i are calculated.

Step 6: Find the score values of ri (i = 1, · · · ,m)
Step 7: Grade all the possible alternative γ̂i (i = 1, · · · ,m) and select the most

desirable alternative(s).

7. Illustrative Example

In this section , the results of the established MAGDM approach are reviewed
with the example and their results are compared with those of the current MAGDM
approaches.

7.1. Application of the proposed MAGDM method. Consider a decision-making
problem adapted from [27] about the selection of the best option. To apply the de-
veloped approach effectively, a decision making problem with customers’ choice to
purchase a laptop from four different options alternative (γ̂1, γ̂2, γ̂3, γ̂4, γ̂5) on the basis

of the parameters
(
Ğ1, Ğ2, Ğ3

)
, where Ğ1 stands for processor, Ğ2 stands for system

memory, and Ğ3 stands for hard size, respectively. Let, four decision makers/experts
(E1, E2, E3) with weight vector Θ = (0.33, 0.37, 0.30) provide their individual assess-
ment in the form of SFNs for each option and the corresponding assessments are
presented in Table 1-3, respectively. Then, the steps of the presented approach are
implemented to find the best suitable option and are demonstrated as follows:

Step 1: The evaluation of each expert is summarized in Table 1, 2 and 3.

Table 1. Decision matrix given by expert E(1)

Ğ1 Ğ2 Ğ3

γ̂1 (0.29, 0.54, 0.61) (0.44, 0.59, 0.56) (0.60, 0.31, 0.33)
γ̂2 (0.54, 0.44, 0.63) (0.61, 0.48, 0.54) (0.55, 0.34, 0.36)
γ̂3 (0.27, 0.65, 0.68) (0.73, 0.43, 0.42) (0.51, 0.55, 0.27)
γ̂4 (0.30, 0.22, 0.63) (0.60, 0.47, 0.63) (0.46, 0.47, 0.37)
γ̂5 (0.54, 0.55, 0.49) (0.71, 0.54, 0.42) (0.41, 0.53, 0.46)

Table 2. Decision matrix given by expert E(2)

Ğ1 Ğ2 Ğ3

γ̂1 (0.42, 0.34, 0.68) (0.56, 0.47, 0.37) (0.74, 0.26, 0.30)
γ̂2 (0.78, 0.42, 0.44) (0.67, 0.24, 0.49) (0.81, 0.20, 0.29)
γ̂3 (0.59, 0.37, 0.51) (0.44, 0.62, 0.34) (0.46, 0.44, 0.53)
γ̂4 (0.47, 0.39, 0.54) (0.49, 0.58, 0.42) (0.34, 0.66, 0.40)
γ̂5 (0.56, 0.36, 0.48) (0.50, 0.25, 0.55) (0.52, 0.35, 0.53)
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Table 3. Decision matrix given by expert E(3)

Ğ1 Ğ2 Ğ3

γ̂1 (0.53, 0.27, 0.36) (0.51, 0.31, 0.48) (0.55, 0.33, 0.42)
γ̂2 (0.61, 0.38, 0.51) (0.54, 0.47, 0.29) (0.65, 0.29, 0.55)
γ̂3 (0.58, 0.45, 0.27) (0.59, 0.33, 0.68) (0.61, 0.42, 0.38)
γ̂4 (0.42, 0.39, 0.57) (0.58, 0.26, 0.52) (0.81, 0.23, 0.49)
γ̂5 (0.26, 0.64, 0.50) (0.27, 0.59, 0.44) (0.44, 0.39, 0.57)

Step 2. By taking the weight of the experts i.e., Θ = (0.33, 0.37, 0.30)T and utilize
the ST − SFWA operator to achieve the collective data on each alternative of the
expert. The result are shown in Table 4.

Table 4. Aggregated values of experts by using ST-SFWA operator

Ğ1 Ğ2 Ğ3

γ̂1 (0.561, 0.274, 0.371) (0.642, 0.242, 0.362) (0.428, 0.514, 0.283)
γ̂2 (0.472, 0.383, 0.481) (0.361, 0.462, 0.391) (0.615, 0.326, 0.527)
γ̂3 (0.421, 0.281, 0.634) (0.526, 0.373, 0.473) (0.426, 0.512, 0.249)
γ̂4 (0.631, 0.193, 0.263) (0.438, 0.254, 0.187) (0.369, 0.417, 0.532)
γ̂5 (0.386, 0.562, 0.362) (0.297, 0.393, 0.541) (0.335, 0.318, 0.436)

Step 3: Almost all of the three attributes are just to be the benefit types, then
normalization are not needed.

Step 4: Since the attributes weight are completly unknown. Thus, by utilizing
the data of the Table 2 and idea of the entropy Eq. (6.1). We obtain the values;

Ξ1 = 0.9498,Ξ2 = 0.9194,Ξ3 = 0.8750.

By the help of this we find the attribute weights ω = (0.3461, 0.3351, 0.3188)T . In the
figure 1, we show graphicaly the weight vector of the attributes as;

Step 5: Based on ω = (0.3461, 0.3351, 0.3188)T and utilizing the ST − SFWA
operator, the collective values of each alternatives are gain as;

γ1 = (0.452, 0.474, 0.383) ,

γ2 = (0.552, 0.361, 0.284) ,

γ3 = (0.621, 0.243, 0.264) ,

γ4 = (0.398, 0.528, 0.424) ,

γ5 = (0.628, 0.343, 0.297) .

Step 6: We can get the scores of each alternative by using the Eq. (2.3);

S̄c(γ1) = 0.543, S̄c(γ2) = 0.629, S̄c(γ3) = 0.600, S̄c(γ4) = 0.502, S̄c(γ5) = 0.674.

Step 7: According to the score values as S̄c(γ5) > S̄c(γ2) > S̄c(γ3) > S̄c(γ1) >
S̄c(γ4). Thus, the ranking order is γ̂5 > γ̂2 > γ̂3 > γ̂1 > γ̂4. Hence, γ̂5 is the best
alternative.
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During Step 5 of the established method, the complete analysis by changing aggre-
gation operators is analyzed and their results are shown in Table 5.

Table 5. Impact of different AOs and their ranking

Operators
Score values

γ̂1 γ̂2 γ̂3 γ̂4 γ̂5
Ranking

ST-SFOWA 0.543 0.629 0.600 0.502 0.674 γ̂5 > γ̂2 > γ̂3 > γ̂1 > γ̂4

ST-SFHA 0.484 0.573 0.542 0.425 0.591 γ̂5 > γ̂2 > γ̂3 > γ̂1 > γ̂4

ST-SFOWG 0.534 0.716 0.642 0.587 0.753 γ̂5 > γ̂2 > γ̂3 > γ̂4 > γ̂1

ST-SFHG 0.663 0.753 0.711 0.638 0.776 γ̂5 > γ̂2 > γ̂3 > γ̂1 > γ̂4

We can therefore conclude from all the above-mentioned computational process that
the alternative γ̂2 is really the best option amongst the other options and therefore it
is strongly recommended that the appropriate option is γ̂2. In the figure 2, we show
graphicaly the ranking of the alternatives by using their score values.

7.2. Comparative Analysis. In this subsection, we give some brief discussion on
the comparison of the proposed method with some well know related methods [4, 5,
28,36,43,60].

7.3. Comparison Analysis. The comparison of the developed approach with the
existing approaches to examine the reliability and effectiveness of the explored method.
The established method are compared with the some other methods based on SFS
was established by Ashraf et al. [4], Spherical fuzzy Dombi aggregation operators and
their application in group DM problems, Ashraf et al. [5], Spherical fuzzy sets and its
representation of Spherical fuzzy t-norms and t-conorms, Kutlu et al. [28], Spherical
fuzzy sets and Spherical fuzzy TOPSIS method, Mahmood et al. [36], An approach
toward DM and medical diagnosis problems using the concept of Spherical fuzzy sets,
Rafiq et al. [43], The cosine similarity measures of Spherical fuzzy sets and their ap-
plications in DM, Zeng et al. [60], Covering based Spherical fuzzy rough set model
hybrid with TOPSIS for multiple attribute DM.

Table 6. Comparison of ranking with different AOs

Authors
Score values

γ̂1 γ̂2 γ̂3 γ̂4 γ̂5
Ranking

Ashraf et al. [4] 0.761 0.832 0.804 0.746 0.855 γ̂5 > γ̂2 > γ̂3 > γ̂1 > γ̂4

Ashraf et al. [5] 0.529 0.638 0.593 0.514 0.664 γ̂5 > γ̂2 > γ̂3 > γ̂1 > γ̂4

Kutlu et al. [28] 0.669 0.746 0.707 0.653 0.773 γ̂5 > γ̂2 > γ̂3 > γ̂1 > γ̂4

Mahmood et al. [36] 0.227 0.311 0.274 0.158 0.352 γ̂5 > γ̂2 > γ̂3 > γ̂1 > γ̂4

Rafiq et al. [43] 0.478 0.539 0.512 0.464 0.587 γ̂5 > γ̂2 > γ̂3 > γ̂1 > γ̂4

Zeng et al. [60] 0.421 0.515 0.465 0.388 0.532 γ̂5 > γ̂2 > γ̂3 > γ̂1 > γ̂4

From the outcomes of the proposed operators and the other existing methods, we
conclude that ranking lists obtained from both the defined method and the compared
methods are slightly different, but the best alternative from all the approaches is
same. Thus the sine trigonometric aggeregation operators with the Spherical fuzzy
set environment is a good idea to solve DM problems, and there are many hindrances
which can be solved by using our proposed theory. The sine trigonometric aggerega-
tion operators with the Spherical fuzzy set environment are more flexible and easy
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approach and the best alternative can be obtained by a short process. Thus, the result
obtained from the defined method are more accurate and closest. In the figure 3, we
show graphicaly the ranking of the alternatives based on their score values by using
different methods.

7.4. Verification. In this portion, the results given by the proposed aggregation
operators are verified by TOPSIS and VIKOR methods.

7.4.1. By TOPSIS Method. Here we verify the numerical problem given in Section 7
by TOPSIS method. We have the aggregated information by ST-SFWA operator in
Table 4, We will apply TOPSIS method on the data given in Table 4.

To solve the mentioned problem in Section 7, we follow the steps of TOPSIS method
as follows.

Step 1: Normalize the decision matrix given in Table 4. Here is no need of nor-
malization as all the measure values are of same type, i.e., benefit type.

Step 2: Identifying the PIS R+and NIS R−, which are defined as,

R+ = (ζ+
1 , ..., ζ

+
5 ), R− = (ζ−1 , ..., ζ

−
5 ),

where

ζ+
j = max{ζij/1 ≤ i ≤ 5} and ζ−j = min{ζij/1 ≤ i ≤ 5},

which are calculated by using the score function

S̄c
(
Ĭ
)

= ĔĬ (ŭ) + ŘĬ (ŭ)− ŽĬ (ŭ) .

Step 3: Calculate the distance for each alternative to R+ and R− using the pro-
posed distance measures with criteria weight vector ω = (0.3461, 0.3351, 0.3188) .i.e.,

d+
i =

√
Σm
j=1wj(ζ

+
j − ζij)2, and d−i =

√
Σm
j=1wj(ζ

−
j − ζij)2.

Step 4: Calculate the closeness coefficients to the ideal solution by each alternative
by applying the equation,

cci = d−i /(d
−
i + d+

i )(i = 1, .., 5),

the overall closeness coefficients are obtained.
Step 5: Ranking the alternatives by using the score function of SFNs and select

the best one. We have the ranking result as

γ̂5 > γ̂2 > γ̂3 > γ̂1 > γ̂4.

All the calculation results and the alternatives ranking is given in Table 7. Ac-
cording to the calculations of overall coefficients the best one with largest close-
ness coefficient is γ̂5.
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Hence by TOPSIS method it is again verified that γ̂5 is the most suitable robot to
be selected by the manufacturing unit.

Table 7. Calculation Results and Ranking of the Alternatives

Distance for Distance for Closeness coefficients
Alternatives alternative to alternative to to the ideal solution Rank

PIS (d+
i ) NIS (d−i ) of alternative (cci)

γ̂1 0.172 0.111 0.392 4
γ̂2 0.201 0.154 0.434 2
γ̂3 0.213 0.149 0.412 3
γ̂4 0.372 0.131 0.261 5
γ̂5 0.156 0.163 0.511 1

7.4.2. By VIKOR Method. Here we solve the numerical problem given in Section 7
by VIKOR method. The aggregated values of all the individual experts evaluation
information based on ST-SFWA operator is given in Table 4. For this purpose using
ω = (0.3461, 0.3351, 0.3188)T as the attribute weight vector, we will apply VIKOR
method on the information given in Table 4.

Now, to solve the problem using the VIKOR method, the following steps are uti-
lized.

Step 1: Normalize the decision matrix given in Table 4. Here is no need of nor-
malization as all the measure values are of same type, i.e., benefit type.

Step 2: Identifying the PIS R+and NIS R−. The PIS R+and NIS R− are defined
as follows:

R+ = (ζ+
1 , ..., ζ

+
5 ), R− = (ζ−1 , ..., ζ

−
5 ),

where

ζ+
j = max{ζij/1 ≤ i ≤ 5} and ζ−j = min{ζij/1 ≤ i ≤ 5},

which are calculated by using the score function S̄c
(
Ĭ
)

= ĔĬ (ŭ) + ŘĬ (ŭ)− ŽĬ (ŭ) .

Step 3: Calculate the values Si, Ri and Qi can be obtained by using equations,

Si =
m∑
j=1

wjd(ζij, ζ
+
j )

d(ζ+
j , ζ

−
j )

,

Ri = max
i≤j≤m

wjd(ζij, ζ
+
j )

d(ζ+
j , ζ

−
j )

,

and

Qi =
v(Si − S∗)
(S− − S∗)

+
(1− v)(Ri −R∗)

(R− −R∗)
.

Assume v = 0.5, then the calculated results are shown in the Table 8. Also,

S∗ = 0.42, S− = 0.76, R∗ = 0.33, R− = 0.421.

Step 4: Rank the alternatives by sorting each Si, Ri, and Qi values in an decreas-
ing order. The values of Qi are ranked as

Q4 > Q1 > Q3 > Q2 > Q5.
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Step 5: Propose a compromise solution, from the ranking results it can be seen
that γ̂5, which is ranked the best by measure Q5, is the compromise solution.

Table 8. Ranking of the Alternatives

Alternatives Si Ri Qi Rank
γ̂1 0.731 0.253 0.798 4
γ̂2 0.637 0.163 0.431 2
γ̂3 0.698 0.234 0.728 3
γ̂4 0.912 0.320 0.891 5
γ̂5 0.401 0.172 0.00 1

Thus, both the methods (TOPSIS, VIKOR) have been successfully applied for
the verification of the results given by the proposed ST-SFWA aggregation op-
erators for the bset alternative selection. Alternative γ̂5 is the highest ranked.
Hence verified that γ̂5 is the best alternative among all.

8. Conclusion

A research relating to aggregation operators was investigated in this study by estab-
lishing some new sine trigonometric operation laws for SFSs. During decision making
problems, the well defined operation laws play a major role. On the other hand, the
sine trigonometric function has both the characteristics of the periodicity and the
symmetrical nature of the origin and therefore the most likely to satisfy the experts
preference over a multi-time period. Therefore, we describe some sine trigonometric
operation laws for SFNs and study their properties in order to take these advantages
and make a decision smoother and more important. We have defined various average
and geometric AOs on the basis of these operators to club decision makers preference.
The different elementary relations between the aggregation operators are discussed
and explained in detail. We developed a new MAGDM approach for group DM prob-
lems in which goals are classify in terms of SFNs to enforce the proposed laws on
decision making problems. Further, we compute the weight of the attribute by com-
bining the subjective and the objective data in terms of measure. The functionality
of the proposed method is applied on an example of laptope selection, and superiority
and feasibility of the approach are investigated in detail. A comparative study is often
carried out with current works to verify its performance.

In the future, we will use the framework built on new multiple attribute assessment
models to tackle fuzziness and ambiguity in a variety of DM parameters, such as design
choices, building options, site selection and DM problems.
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