• Title/Summary/Keyword: fuzzy Banach space.

Search Result 38, Processing Time 0.021 seconds

FUZZY STABILITY OF QUADRATIC-CUBIC FUNCTIONAL EQUATIONS

  • Kim, Chang Il;Yun, Yong Sik
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.413-423
    • /
    • 2016
  • In this paper, we consider the functional equation f(x + 2y) - 3f(x + y) + 3f(x) - f(x - y) - 3f(y) + 3f(-y) = 0 and prove the generalized Hyers-Ulam stability for it when the target space is a fuzzy Banach space. The usual method to obtain the stability for mixed type functional equation is to split the cases according to whether the involving mappings are odd or even. In this paper, we show that the stability of a quadratic-cubic mapping can be obtained without distinguishing the two cases.

FUZZY STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION WITH THE FIXED POINT ALTERNATIVE

  • SEO, JEONG PIL;LEE, SUNGJIN;SAADATI, REZA
    • The Pure and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.285-298
    • /
    • 2015
  • In [41], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed positive integer l holds for all x1, ⋯ , x2l ∈ V . For the above equality, we can define the following functional equation Using the fixed point method, we prove the Hyers-Ulam stability of the functional equation (0.1) in fuzzy Banach spaces.

A NEW TYPE OF THE ADDITIVE FUNCTIONAL EQUATIONS ON INTUITIONISTIC FUZZY NORMED SPACES

  • Arunkumar, Mohan;Bodaghi, Abasalt;Namachivayam, Thirumal;Sathya, Elumalai
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.915-932
    • /
    • 2017
  • In this paper, we introduce a new type of additive functional equations and establish the generalized Ulam-Hyers stability for it in intuitionistic fuzzy normed space by using direct and fixed point methods.

GENERALIZED CUBIC FUNCTIONS ON A QUASI-FUZZY NORMED SPACE

  • Kang, Dongseung;Kim, Hoewoon B.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.29-46
    • /
    • 2019
  • We introduce a generalized cubic functional equation and investigate the Hyers-Ulam stability of the cubic functions as solutions to the generalized cubic functional equation on a quasi-fuzzy anti-${\beta}$-Banach space by both the direct method and the fixed point method.

GENERALIZED VECTOR-VALUED VARIATIONAL INEQUALITIES AND FUZZY EXTENSIONS

  • Lee, Byung-Soo;Lee, Gue-Myung;Kim, Do-Sang
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.609-624
    • /
    • 1996
  • Recently, Giannessi [9] firstly introduced the vector-valued variational inequalities in a real Euclidean space. Later Chen et al. [5] intensively discussed vector-valued variational inequalities and vector-valued quasi variationl inequalities in Banach spaces. They [4-8] proved some existence theorems for the solutions of vector-valued variational inequalities and vector-valued quasi-variational inequalities. Lee et al. [14] established the existence theorem for the solutions of vector-valued variational inequalities for multifunctions in reflexive Banach spaces.

  • PDF

GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION PROBLEMS WITH RANDOM FUZZY MAPPINGS IN BANACH SPACES

  • Balooee, Javad
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.243-267
    • /
    • 2013
  • This paper is dedicated to study a new class of general nonlinear random A-maximal $m$-relaxed ${\eta}$-accretive (so called (A, ${\eta}$)-accretive [49]) equations with random relaxed cocoercive mappings and random fuzzy mappings in $q$-uniformly smooth Banach spaces. By utilizing the resolvent operator technique for A-maximal $m$-relaxed ${\eta}$-accretive mappings due to Lan et al. and Chang's lemma [13], some new iterative algorithms with mixed errors for finding the approximate solutions of the aforesaid class of nonlinear random equations are constructed. The convergence analysis of the proposed iterative algorithms under some suitable conditions are also studied.

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY BANACH SPACES

  • LEE, SUNG JIN;SEO, JEONG PIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.163-179
    • /
    • 2016
  • Let $M_1f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$, $M_2f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$ Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities (0.1) $N(M_1f(x,y)-{\rho}M_2f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$ and (0.2) $N(M_2f(x,y)-{\rho}M_1f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$ in fuzzy Banach spaces, where ρ is a fixed real number with ρ ≠ 1.

Common fixed point theorem and example in intuitionistic fuzzy metric space (직관적 퍼지 거리공간에서 공통부동점 정리 및 예제)

  • Park, Jong-Seo;Kim, Seon-Yu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.524-529
    • /
    • 2008
  • Park et.al.[10] defined the intuitionistic fuzzy metric space in which it is a little revised in Park[4], and Park et.a1.[7] proved a fixed point theorem of Banach for the contractive mapping of a complete intuitionistic fuzzy metric space. In this paper, we will establish common fixed point theorem for four self maps in intuitionistic fuzzy metric space. These results have been used to obtain translation and generalization of Grabiec's contraction principle.

FUZZY ALMOST q-CUBIC FUNCTIONAL EQATIONS

  • Kim, ChangIl
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.239-249
    • /
    • 2017
  • In this paper, we approximate a fuzzy almost cubic function by a cubic function in a fuzzy sense. Indeed, we investigate solutions of the following cubic functional equation $$3f(kx+y)+3f(kx-y)-kf(x+2y)-2kf(x-y)-3k(2k^2-1)f(x)+6kf(y)=0$$. and prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.

QUADRATIC (ρ1, ρ2)-FUNCTIONAL INEQUALITY IN FUZZY BANACH SPACES

  • Park, Junha;Jo, Younghun;Kim, Jaemin;Kim, Taekseung
    • The Pure and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.179-190
    • /
    • 2017
  • In this paper, we introduce and solve the following quadratic (${\rho}_1$, ${\rho}_2$)-functional inequality (0.1) $$N\left(2f({\frac{x+y}{2}})+2f({\frac{x-y}{2}})-f(x)-f(y),t\right){\leq}min\left(N({\rho}_1(f(x+y)+f(x-y)-2f(x)-2f(y)),t),\;N({\rho}_2(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)),t)\right)$$ in fuzzy normed spaces, where ${\rho}_1$ and ${\rho}_2$ are fixed nonzero real numbers with ${{\frac{1}{{4\left|{\rho}_1\right|}}+{{\frac{1}{{4\left|{\rho}_2\right|}}$ < 1, and f(0) = 0. Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (${\rho}_1$, ${\rho}_2$)-functional inequality (0.1) in fuzzy Banach spaces.