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FUZZY STABILITY OF AN ADDITIVE-QUADRATIC
FUNCTIONAL EQUATION WITH THE FIXED POINT

ALTERNATIVE

Jeong Pil Seo a, Sungjin Lee b, ∗ and Reza Saadati c

Abstract. In [41], Th.M. Rassias proved that the norm defined over a real vector
space V is induced by an inner product if and only if for a fixed positive integer l

2l

∥∥∥∥∥
1

2l

2l∑
i=1

xi

∥∥∥∥∥

2

+

2l∑
i=1

∥∥∥∥∥xi − 1

2l

2l∑
j=1

xj

∥∥∥∥∥

2

=

2l∑
i=1

‖xi‖2

holds for all x1, · · · , x2l ∈ V . For the above equality, we can define the following
functional equation
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Using the fixed point method, we prove the Hyers-Ulam stability of the functional
equation (0.1) in fuzzy Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[51] concerning the stability of group homomorphisms. Hyers [13] gave a first affir-
mative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem
was generalized by Aoki [1] for additive mappings and by Th.M. Rassias [40] for
linear mappings by considering an unbounded Cauchy difference. A generalization
of the Th.M. Rassias theorem was obtained by Găvruta [12] by replacing the un-
bounded Cauchy difference by a general control function in the spirit of the Th.M.
Rassias’ approach.

The functional equation
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f(x + y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the qua-
dratic functional equation is said to be a quadratic mapping. A Hyers-Ulam stability
problem for the quadratic functional equation was proved by Skof [50] for mappings
f : X → Y , where X is a normed space and Y is a Banach space. Cholewa [8]
noticed that the theorem of Skof is still true if the relevant domain X is replaced
by an Abelian group. Czerwik [9] proved the Hyers-Ulam stability of the quadratic
functional equation. The stability problems of several functional equations have
been extensively investigated by a number of authors and there are many interest-
ing results concerning this problem (see [14, 16, 17, 31, 32, 33, 34, 35, 37, 38, 39, 42,
43, 44, 45, 46, 47, 48, 49]).

In [33], Park, Lee and Shin proved that an even mapping f : V → W satisfies the
functional equation (0.1) if and only if the even mapping f : V → W is quadratic.
Moreover, they proved the Hyers-Ulam stability of the quadratic functional equation
(0.1) in real Banach spaces.

Katsaras [18] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms
on a vector space from various points of view [11, 20, 52]. In particular, Bag and
Samanta [2], following Cheng and Mordeson [7], gave an idea of fuzzy norm in such
a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [19].
They established a decomposition theorem of a fuzzy norm into a family of crisp
norms and investigated some properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, 24, 25] to investigate
a fuzzy version of the Hyers-Ulam stability for the functional equation (0.1) in the
fuzzy normed vector space setting.

Definition 1.1 ([2, 24, 25, 26]). Let X be a real vector space. A function N :
X × R→ [0, 1] is called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0;
(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1;
(N6) for x 6= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
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The properties of fuzzy normed vector spaces and examples of fuzzy norms are
given in [24, 27].

Definition 1.2 ([2, 24, 25, 26]). Let (X, N) be a fuzzy normed vector space. A
sequence {xn} in X is said to be convergent or converge if there exists an x ∈ X

such that limn→∞N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit of
the sequence {xn} and we denote it by N -limn→∞ xn = x.

Definition 1.3 ([2, 24, 25]). Let (X, N) be a fuzzy normed vector space. A sequence
{xn} in X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N
such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and
Y is continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X,
then the sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each
x ∈ X, then f : X → Y is said to be continuous on X (see [3]).

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on
X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
We recall a fundamental result in fixed point theory.

Theorem 1.4 ([4, 10]). Let (X, d) be a complete generalized metric space and let
J : X → X be a strictly contractive mapping with Lipschitz constant L < 1. Then
for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .
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In 1996, G. Isac and Th.M. Rassias [15] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theorems
with applications. By using fixed point methods, the stability problems of several
functional equations have been extensively investigated by a number of authors (see
[5, 6, 27, 29, 30, 36]).

Starting with the paper [24], the stability of some functional equations in the
framework of fuzzy normed spaces or random normed spaces has been investigated
(see e.g., [21, 22, 23, 24, 25, 26, 27, 28]).

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability
of the functional equation (0.1) in fuzzy Banach spaces for an odd case. In Section 3,
we prove the Hyers-Ulam stability of the functional equation (0.1) in fuzzy Banach
spaces for an even case.

Throughout this paper, assume that X is a vector space and that (Y, N) is a
fuzzy Banach space. Let l be a fixed positive integer.

2. Hyers-Ulam Stability of the Functional Equation (0.1):
an Odd Case

For a given mapping f : X → Y , we define

Cf(x1, · · · , x2l) := 2lf
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for all x1, · · · , x2l ∈ X.
Using the fixed point method, we prove the Hyers-Ulam stability of the functional

equation Cf(x1, · · · , x2l) = 0 in fuzzy Banach spaces: an odd case.

Theorem 2.1. Let ϕ : X2l → [0,∞) and ψ(x) := ϕ(x, · · · , x︸ ︷︷ ︸
l times

, 0, · · · , 0︸ ︷︷ ︸
l times

) be functions

such that there exists an L < 1 with

ϕ(x1, · · · , x2l) ≤ L

2
ϕ (2x1, · · · , 2x2l)

for all x1, · · · , x2l ∈ X. Let f : X → Y be an odd mapping satisfying

N (Cf(x1, · · · , x2l), t) ≥ t

t + ϕ(x1, · · · , x2l)
(2.1)

for all x1, · · · , x2l ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(

x
2n

)
exists for

each x ∈ X and defines an additive mapping A : X → Y such that
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N (f(x)−A(x), t) ≥ (l − lL)t
(l − lL)t + ψ(x)

(2.2)

for all x ∈ X and all t > 0.

Proof. Letting x1 = · · · = xl = x and xl+1 = · · · = x2l = 0 in (2.1), we get
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for all x ∈ X.
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf{µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t + ψ(x)
, ∀x ∈ X,∀t > 0},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete. (See the
proof of Lemma 2.1 of [22].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x

2

)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t
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t
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for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means
that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.3) that d(f, Jf) ≤ 1

l .
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By Theorem 1.4, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A
(x

2

)
=

1
2
A(x)(2.4)

for all x ∈ X. Since f : X → Y is odd, A : X → Y is an odd mapping. The mapping
A is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that A is a unique mapping satisfying (2.4) such that there exists a
µ ∈ (0,∞) satisfying

N(f(x)−A(x), µt) ≥ t

t + ψ(x)
for all x ∈ X;

(2) d(Jnf, A) → 0 as n →∞. This implies the equality

N - lim
n→∞ 2nf

( x

2n

)
= A(x)

for all x ∈ X;
(3) d(f, A) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f,A) ≤ 1
l − lL

.

This implies that the inequality (2.2) holds.
By (2.1),
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for all x1, · · · , x2l ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t

2n
t

2n +Ln

2n ϕ(x1,··· ,x2l)
= 1

for all x1, · · · , x2l ∈ X and all t > 0,

N (CA(x1, · · · , x2l), t) = 1

for all x1, · · · , x2l ∈ X and all t > 0. Thus CA(x1, · · · , x2l) = 0. Since A is odd,
it follows from Lemma 2.1 of [35] that the mapping A : X → Y is additive, as
desired. ¤
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Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed
vector space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

N (Cf(x1, · · · , x2l), t) ≥ t

t + θ
∑2l

j=1 ‖xj‖p
(2.5)

for all x1, · · · , x2l ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(

x
2n

)
exists for

each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2p − 2)t
(2p − 2)t + 2pθ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x1, · · · , x2l) := θ
2l∑

j=1

‖xj‖p

for all x1, · · · , x2l ∈ X. Then we can choose L = 21−p and we get the desired
result. ¤

Theorem 2.3. Let ϕ : X2l → [0,∞) and ψ(x) := ϕ(x, · · · , x︸ ︷︷ ︸
l times

, 0, · · · , 0︸ ︷︷ ︸
l times

) be functions

such that there exists an L < 1 with

ϕ(x1, · · · , x2l) ≤ 2Lϕ
(x1

2
, · · · ,

x2l

2

)

for all x1, · · · , x2l ∈ X. Let f : X → Y be an odd mapping satisfying (2.1). Then
A(x) := N -limn→∞ 1

2n f (2nx) exists for each x ∈ X and defines an additive mapping
A : X → Y such that

N (f(x)−A(x), t) ≥ (l − lL)t
(l − lL)t + Lψ(x)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem
2.1.

Consider the linear mapping J : S → S such that

Jg(x) :=
1
2
g (2x)

for all x ∈ X.
It follows from (2.3) that

N(2lf(x)− lf(2x), t) ≥ t

t + ψ(2x)
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for all x ∈ X and all t > 0. Thus

N

(
f(x)− 1

2
f(2x),

2L

2l
t

)
≥ 2Lt

2Lt + 2Lψ(x)
=

t

t + ψ(x)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L
l .

The rest of the proof is similar to the proof of Theorem 2.1. ¤

Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a
normed vector space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying
(2.5). Then A(x) := N -limn→∞ 1

2n f (2nx) exists for each x ∈ X and defines an
additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2p)t
(2− 2p)t + 2pθ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking

ϕ(x1, · · · , x2l) := θ

2l∑

j=1

‖xj‖p

for all x1, · · · , x2l ∈ X. Then we can choose L = 2p−1 and we get the desired
result. ¤

3. Hyers-Ulam Stability of the Functional Equation (0.1):
an Even Case

In this section, using the fixed point method, we prove the Hyers-Ulam stability
of the functional equation Cf(x1, · · · , x2l) = 0 in fuzzy Banach spaces: an even case.

Theorem 3.1. Let ϕ : X2l → [0,∞) and ψ(x) := ϕ(x, · · · , x︸ ︷︷ ︸
l times

, 0, · · · , 0︸ ︷︷ ︸
l times

) be functions

such that there exists an L < 1 with

ϕ(x1, · · · , x2l) ≤ L

4
ϕ (2x1, · · · , 2x2l)

for all x1, · · · , x2l ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0
and (2.1). Then Q(x) := N -limn→∞ 4nf

(
x
2n

)
exists for each x ∈ X and defines a

quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (l − lL)t
(l − lL)t + ψ(x)

(3.1)

for all x ∈ X and all t > 0.



FUZZY STABILITY OF ADDITIVE-QUADRATIC FUNCTIONAL EQUATION 293

Proof. Letting x1 = · · · = xl = x and xl+1 = · · · = x2l = 0 in (2.1), we get

N
(
4lf

(x

2

)
− lf(x), t

)
≥ t

t + ϕ(x, · · · , x︸ ︷︷ ︸
l times

, 0, · · · , 0︸ ︷︷ ︸
l times

)
=

t

t + ψ(x)
(3.2)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t + ψ(x)
for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N
(
4g

(x

2

)
− 4h

(x

2

)
, Lεt

)

= N

(
g

(x

2

)
− h

(x

2

)
,
L

4
εt

)
≥

Lt
4

Lt
4 + ψ

(
x
2

)

≥
Lt
4

Lt
4 + L

4 ψ(x)
=

t

t + ψ(x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means
that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (3.2) that d(f, Jf) ≤ 1

l .
By Theorem 1.4, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , i.e.,

Q
(x

2

)
=

1
4
Q(x)(3.3)

for all x ∈ X. Since f : X → Y is even, Q : X → Y is an even mapping. The
mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that Q is a unique mapping satisfying (3.3) such that there exists a
µ ∈ (0,∞) satisfying

N(f(x)−Q(x), µt) ≥ t

t + ψ(x)
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for all x ∈ X;
(2) d(Jnf, Q) → 0 as n →∞. This implies the equality

N - lim
n→∞ 4nf

( x

2n

)
= Q(x)

for all x ∈ X;
(3) d(f, Q) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f,Q) ≤ 1
l − lL

.

This implies that the inequality (3.1) holds.
The rest of the proof is similar to the proof of Theorem 2.1. ¤

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed
vector space with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0
and (2.5). Then Q(x) := N -limn→∞ 4nf

(
x
2n

)
exists for each x ∈ X and defines a

quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (2p − 4)t
(2p − 4)t + 2pθ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

ϕ(x1, · · · , x2l) := θ
2l∑

j=1

‖xj‖p

for all x1, · · · , x2l ∈ X. Then we can choose L = 22−p and we get the desired
result. ¤

Similarly, we can obtain the following. We will omit the proof.

Theorem 3.3. Let ϕ : X2l → [0,∞) and ψ(x) := ϕ(x, · · · , x︸ ︷︷ ︸
l times

, 0, · · · , 0︸ ︷︷ ︸
l times

) be functions

such that there exists an L < 1 with

ϕ(x1, · · · , x2l) ≤ 4Lϕ
(x1

2
, · · · ,

x2l

2

)

for all x1, · · · , x2l ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0
and (2.1). Then Q(x) := N -limn→∞ 1

4n f (2nx) exists for each x ∈ X and defines a
quadratic mapping Q : X → Y such that

N (f(x)−A(x), t) ≥ (l − lL)t
(l − lL)t + ψ(x)
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for all x ∈ X and all t > 0.

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a
normed vector space with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying
f(0) = 0 and (2.5). Then Q(x) := N -limn→∞ 1

4n f (2nx) exists for each x ∈ X and
defines a quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (4− 2p)t
(4− 2p)t + 2pθ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x1, · · · , x2l) := θ
2l∑

j=1

‖xj‖p

for all x1, · · · , x2l ∈ X. Then we can choose L = 2p−2 and we get the desired
result. ¤
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22. D. Miheţ & V. Radu: On the stability of the additive Cauchy functional equation in
random normed spaces. J. Math. Anal. Appl. 343 (2008), 567-572.

23. A.K. Mirmostafaee: A fixed point approach to almost quartic mappings in quasi fuzzy
normed spaces. Fuzzy Sets and Systems 160 (2009), 1653-1662.

24. A.K. Mirmostafaee, M. Mirzavaziri & M.S. Moslehian: Fuzzy stability of the Jensen
functional equation. Fuzzy Sets and Systems 159 (2008), 730-738.

25. A.K. Mirmostafaee & M.S. Moslehian: Fuzzy versions of Hyers-Ulam-Rassias theorem.
Fuzzy Sets and Systems 159 (2008), 720-729.

26. : Fuzzy approximately cubic mappings. Inform. Sci. 178 (2008), 3791-3798.
27. M. Mirzavaziri & M.S. Moslehian: A fixed point approach to stability of a quadratic

equation. Bull. Braz. Math. Soc. 37 (2006), 361-376.
28. A.K. Mirmostafaee & M.S. Moslehian: Fuzzy stability of additive mappings in non-

Archimedean fuzzy normed spaces. Fuzzy Sets and Systems 160 (2009), 1643-1652.
29. C. Park: Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional

equations in Banach algebras. Fixed Point Theory and Applications 2007, Art. ID 50175
(2007).



FUZZY STABILITY OF ADDITIVE-QUADRATIC FUNCTIONAL EQUATION 297

30. : Generalized Hyers-Ulam-Rassias stability of quadratic functional equations:
a fixed point approach, Fixed Point Theory and Applications 2008, Art. ID 493751
(2008).

31. C. Park, Y. Cho & M. Han: Functional inequalities associated with Jordan-von Neu-
mann type additive functional equations. J. Inequal. Appl. 2007, Art. ID 41820 (2007).

32. C. Park & J. Cui: Generalized stability of C∗-ternary quadratic mappings. Abstract
Appl. Anal. 2007, Art. ID 23282 (2007).

33. C. Park, J. Lee & D. Shin: Quadratic mappings associated with inner product spaces.
(preprint).

34. C. Park & A. Najati: Homomorphisms and derivations in C∗-algebras. Abstract Appl.
Anal. 2007, Art. ID 80630 (2007).

35. C. Park, W. Park & A. Najati: Functional equations related to inner product spaces.
Abstract Appl. Anal. 2009, Art. ID 907121 (2009).

36. V. Radu: The fixed point alternative and the stability of functional equations. Fixed
Point Theory 4 (2003), 91-96.

37. J.M. Rassias: On approximation of approximately linear mappings by linear mappings.
Bull. Sci. Math. 108 (1984), 445-446.

38. : Refined Hyers-Ulam approximation of approximately Jensen type mappings.
Bull. Sci. Math. 131 (2007), 89-98.

39. J.M. Rassias & M.J. Rassias: Asymptotic behavior of alternative Jensen and Jensen
type functional equations. Bull. Sci. Math. 129 (2005), 545-558.

40. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer.
Math. Soc. 72 (1978), 297-300.

41. : New characterizations of inner product spaces. Bull. Sci. Math. 108 (1984),
95-99.

42. : Problem 16; 2. Report of the 27th International Symp. on Functional Equations.
Aequationes Math. 39 (1990), 292-293; 309.

43. : On the stability of the quadratic functional equation and its applications.
Studia Univ. Babes-Bolyai XLIII (1998), 89-124.

44. : The problem of S.M. Ulam for approximately multiplicative mappings. J. Math.
Anal. Appl. 246 (2000), 352-378.

45. : On the stability of functional equations in Banach spaces. J. Math. Anal. Appl.
251 (2000), 264-284.

46. : On the stability of functional equations and a problem of Ulam. Acta Appl.
Math. 62 (2000), 23-130.
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