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QUADRATIC (ρ1, ρ2)-FUNCTIONAL INEQUALITY
IN FUZZY BANACH SPACES

Junha Park a, Younghun Jo b, Jaemin Kim c and Taekseung Kim d, ∗

Abstract. In this paper, we introduce and solve the following quadratic (ρ1, ρ2)-
functional inequality
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in fuzzy normed spaces, where ρ1 and ρ2 are fixed nonzero real numbers with 1
4|ρ1| +

1
4|ρ2| < 1, and f(0) = 0.

Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic
(ρ1, ρ2)-functional inequality (0.1) in fuzzy Banach spaces.

1. Introduction and Preliminaries

Katsaras [20] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms
on a vector space from various points of view [11, 24, 50]. In particular, Bag and
Samanta [2], following Cheng and Mordeson [8], gave an idea of fuzzy norm in such
a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [23].
They established a decomposition theorem of a fuzzy norm into a family of crisp
norms and investigated some properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, 29, 30] to investigate
the Hyers-Ulam stability of quadratic (ρ1, ρ2)-functional inequality in fuzzy Banach
spaces.
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Definition 1.1 ([2, 29, 30, 31]). Let X be a real vector space. A function N :
X × R→ [0, 1] is called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0;
(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1.
(N6) for x 6= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are

given in [28, 29].

Definition 1.2 ([2, 29, 30, 31]). Let (X, N) be a fuzzy normed vector space. A
sequence {xn} in X is said to be convergent or converge if there exists an x ∈ X

such that limn→∞N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit of
the sequence {xn} and we denote it by N -limn→∞ xn = x.

Definition 1.3 ([2, 29, 30, 31]). Let (X, N) be a fuzzy normed vector space. A
sequence {xn} in X is called Cauchy if for each ε > 0 and each t > 0 there exists
an n0 ∈ N such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and
Y is continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X,
then the sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each
x ∈ X, then f : X → Y is said to be continuous on X (see [3]).

The stability problem of functional equations originated from a question of Ulam
[49] concerning the stability of group homomorphisms. Hyers [15] gave a first affirma-
tive partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was
generalized by Aoki [1] for additive mappings and by Th.M. Rassias [41] for linear
mappings by considering an unbounded Cauchy difference. A generalization of the
Th.M. Rassias theorem was obtained by Găvruta [12] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Th.M. Rassias’ ap-
proach. The stability problems of several functional equations have been extensively
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investigated by a number of authors and there are many interesting results concern-
ing this problem (see [7, 16, 19, 21, 22, 25, 37, 38, 39, 43, 44, 45, 46, 47, 48]).

In [18], Jun and Kim considered the following cubic functional equation

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x).(1.1)

It is easy to show that the function f(x) = x3 satisfies the functional equation (1.1),
which is called a cubic functional equation and every solution of the cubic functional
equation is said to be a cubic mapping.

In [26], Lee et al. considered the following quartic functional equation

f(2x + y) + f(2x− y) = 4f(x + y) + 4f(x− y) + 24f(x)− 6f(y).(1.2)

It is easy to show that the function f(x) = x4 satisfies the functional equation
(1.2), which is called a quartic functional equation and every solution of the quartic
functional equation is said to be a quartic mapping.

Gilányi [13] showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(x− y)‖ ≤ ‖f(x + y)‖(1.3)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(x + y) + f(x− y).

See also [42]. Fechner [10] and Gilányi [14] proved the Hyers-Ulam stability of the
functional inequality (1.3). Park, Cho and Han [36] investigated the Cauchy additive
functional inequality

‖f(x) + f(y) + f(z)‖ ≤ ‖f(x + y + z)‖(1.4)

and the Cauchy-Jensen additive functional inequality

‖f(x) + f(y) + 2f(z)‖ ≤
∥∥∥∥2f

(
x + y

2
+ z

)∥∥∥∥(1.5)

and proved the Hyers-Ulam stability of the functional inequalities (1.4) and (1.5) in
Banach spaces.

Park [34, 35] defined additive ρ-functional inequalities and proved the Hyers-
Ulam stability of the additive ρ-functional inequalities in Banach spaces and non-
Archimedean Banach spaces.

We recall a fundamental result in fixed point theory.
Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on

X if d satisfies
(1) d(x, y) = 0 if and only if x = y;
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(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.4 ([4, 9]). Let (X, d) be a complete generalized metric space and let
J : X → X be a strictly contractive mapping with Lipschitz constant L < 1. Then
for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [17] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theorems
with applications. By using fixed point methods, the stability problems of several
functional equations have been extensively investigated by a number of authors (see
[5, 6, 28, 32, 33, 39, 40]).

In Section 2, we solve the quadratic (ρ1, ρ2)-functional inequality (0.1) and prove
the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-functional inequality (0.1) in fuzzy
Banach spaces by using the fixed point method.

2. Quadratic (ρ1, ρ2)-functional Inequality (0.1)

In this section, we solve and investigate the quadratic (ρ1, ρ2)-functional inequal-
ity in fuzzy normed spaces.

Throughout this section, assume that ρ1 and ρ2 are fixed nonzero real numbers
with 1

4|ρ1| +
1

4|ρ2| < 1.

Lemma 2.1. Let (Y, N) be a fuzzy normed vector space. If a mapping f : X → Y

satisfies

N

(
2f

(
x + y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y), t

)
(2.1)

≤ min
(

N (ρ1 (f(x + y) + f(x− y)− 2f(x)− 2f(y)) , t) ,

N

(
ρ2

(
4f

(
x + y

2

)
+ f(x− y)− 2f(x)− 2f(y)

)
, t

) )



QUADRATIC (ρ1, ρ2)-FUNCTIONAL INEQUALITY 183

for all x, y ∈ X and all t > 0. Then f is quadratic.

Proof. Assume that f : X → Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get N(−3ρ1f(0), t) ≥ 1. So f(0) = 0.
Letting x = y in (2.1), we get

1 ≤ N (ρ1 (4f (2x)− 4f(x)) , t)

Thus

f (2x) = 4f(x)(2.2)

for all x ∈ X.
Now we consider P : X → Y that

P (x, y) = f(x + y) + f(x− y)− 2f(x)− 2f(y)(2.3)

and we consider

α =
1

4|ρ1| +
1

4|ρ2| .(2.4)

It follows from (2.1) and (2.2) that

N(
1
2
P (x, y), t) ≤ min (N (ρ1P (x, y), t) , N (ρ2P (x, y), t))(2.5)

By letting t′ = 2t from (2.5),

N(P (x, y), t′) ≤ min
(

N

(
ρ1P (x, y),

t′

2

)
, N

(
ρ2P (x, y),

t′

2

))

= min
(

N

(
1
2
P (x, y),

t′

4|ρ1|
)

, N

(
1
2
P (x, y),

t′

4|ρ2|
))

≤ N

(
P (x, y),

(
1

4|ρ1| +
1

4|ρ2|
)

t′
)

= N
(
P (x, y), αt′

)

for all t′ > 0. By (N5) and (N6),

P (x, y) = f(x + y) + f(x− y)− 2f(x)− 2f(y) = 0

for all x, y ∈ X, since α < 1. So f : X → Y is quadratic. ¤

We prove the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-functional inequality
(2.1) in fuzzy Banach spaces.

Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1
with

ϕ(x, y) ≤ 4Lϕ
(x

2
,
y

2

)
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for all x, y ∈ X. Let f : X → Y be a mapping satisfying

min
(

N(2f

(
x + y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y), t),

t

t + ϕ(x, y)

)
(2.6)

≤ min
(

N (ρ1 (f(x + y) + f(x− y)− 2f(x)− 2f(y)) , t) ,

N

(
ρ2

(
4f

(
x + y

2

)
+ f(x− y)− 2f(x)− 2f(y)

)
, t

))

for all x, y ∈ X and all t > 0. Then C(x) := N − limn→∞ 1
4n f (2nx) exists for each

x ∈ X and defines a quadratic mapping C : X → Y such that

N(f(x)− C(x), t) ≥ 4|ρ1|(1− L)t
4|ρ1|(1− L)t + ϕ(x, x)

(2.7)

for all x ∈ X and all t > 0.

Proof. Letting x = y = 0 in (2.6), we get t
t+ϕ(0,0) = 1 ≤ N(−3ρ1f(0), t). So f(0) = 0.

Letting x = y in (2.6), we get
t

t + ϕ(x, x)
≤ N (ρ1 (f (2x)− 4f(x)) , t)(2.8)

≤ N

(
f(x)− 1

4
f(2x),

t

4|ρ1|
)

Consider the set
S := {g : X → Y }

and introduce the generalized metric on S:

d(g, h) = inf
{

µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t + ϕ(x, x)
, ∀x ∈ X,∀t > 0

}
,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [27,
Lemma 2.1]). Now we consider the linear mapping J : S → S such that

Jg(x) :=
1
4
g (2x)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t + ϕ(x, x)
for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N

(
1
4
g (2x)− 1

4
h (2x) , Lεt

)
= N (g (2x)− h (2x) , 4Lεt)

≥ 4Lt

4Lt + ϕ (2x, 2x)
≥ 4Lt

4Lt + 4Lϕ(x, x)
=

t

t + ϕ(x, x)
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for all x ∈ X and all t > 0. So d(g, h) = ε implies that

d(Jg, Jh) ≤ Lε.

This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.8) that

N

(
f(x)− 1

4
f (2x) ,

t

4|ρ1|
)
≥ t

t + ϕ(x, x)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ 1
4|ρ1| .

By Theorem 1.4, there exists a mapping C : X → Y satisfying the following:
(1) C is a fixed point of J , i.e.,

C (2x) = 4C(x)(2.9)

for all x ∈ X. The mapping C is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that C is a unique mapping satisfying (2.8) such that there exists a
µ ∈ (0,∞) satisfying

N(f(x)− C(x), µt) ≥ t

t + ϕ(x, x)

for all x ∈ X;
(2) d(Jnf, C) → 0 as n →∞. This implies the equality

N - lim
n→∞

1
4n

f (2nx) = C(x)

for all x ∈ X;
(3) d(f, C) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f, C) ≤ 1
4|ρ1|(1− L)

.

This implies that the inequality (2.7) holds.
By (2.6),

min
(

N

(
1
4n

(
2f

(
2n−1(x + y)

)
+ 2f

(
2n−1(x− y)

)− f (2nx)− f (2ny)
)
,

t

4n

)
,

t

t + ϕ (2nx, 2ny)

)
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≤ min
(

N

(
ρ1

4n
(f (2n(x + y)) + f (2n(x− y))− 2f (2nx)− 2f (2ny)) ,

t

4n

)
,

N

(
ρ2

4n

(
4f

(
2n−1(x + y)

)
+ f (2n(x− y))− 2f (2nx)− 2f (2ny)

)
,

t

4n

))

for all x, y ∈ X, all t > 0 and all n ∈ N. So

min
(

N

(
1
4n

(
2f

(
2n−1(x + y)

)
+ 2f

(
2n−1(x− y)

)− f (2nx)− f (2ny)
)
, t

)
,

4nt

4nt + 4nLnϕ (x, y)

)

≤ min
(

N
(ρ1

4n
(f (2n(x + y)) + f (2n(x− y))− 2f (2nx)− 2f (2ny)) , t

)
,

N
(ρ2

4n

(
4f

(
2n−1(x + y)

)
+ f (2n(x− y))− 2f (2nx)− 2f (2ny)

)
, t

))
.

Since limn→∞ 4nt
4nt+4nLnϕ(x,y) = 1 for all x, y ∈ X and all t > 0,

N(2C
(

x + y

2

)
+ 2C

(
x− y

2

)
− C(x)− C(y), t)

≤ min
(

N

(
ρ1 (C(x + y) + C(x− y)− 2C(x)− 2C(y)) , t

)
,

N

(
ρ2

(
4C

(
x + y

2

)
+ C(x− y)− 2C(x)− 2C(y)

)
, t

))

for all x, y ∈ X and all t > 0. By Lemma 2.1, the mapping C : X → Y is quadratic,
as desired. ¤

Corollary 2.3. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a
normed vector space with norm ‖ · ‖. Let f : X → Y be a mapping satisfying

min
(

N(2f
(

x + y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y), t),

t

t + θ(‖x‖p + ‖y‖p)

)
(2.10)

≤ min
(

N (ρ1 (f(x + y) + f(x− y)− 2f(x)− 2f(y)) , t) ,

N

(
ρ2

(
4f

(
x + y

2

)
+ f(x− y)− 2f(x)− 2f(y)

)
, t

))

for all x, y ∈ X and all t > 0. Then C(x) := N -limn→∞ 1
4n f(2nx) exists for each

x ∈ X and defines a quadratic mapping C : X → Y such that

N (f(x)− C(x), t) ≥ |ρ1|(4− 2p)t
|ρ1|(4− 2p)t + θ‖2x‖p

for all x ∈ X and all t > 0.
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Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) := θ(‖x‖p + ‖y‖p) for
all x, y ∈ X. Then we can choose L = 2p−2, and we get the desired result. ¤

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1
with

ϕ(x, y) ≤ L

4
ϕ (2x, 2y)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying (2.6). Then C(x) := N -
limn→∞ 4nf

(
x
2n

)
exists for each x ∈ X and defines a quadratic mapping C : X → Y

such that

N (f(x)− C(x), t) ≥ 4|ρ1|(1− L)t
4|ρ1|(1− L)t + Lϕ(x, x)

(2.11)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem
2.2.

It follows from (2.8) that

N

(
f(x)− 4f

(x

2

)
,

Lt

4|ρ1|
)
≥ t

t + ϕ(x, x)
for all x ∈ X and all t > 0. Now we consider the linear mapping J : S → S such
that

Jg(x) := 4g
(x

2

)

for all x ∈ X. Then d(f, Jf) ≤ L
4|ρ1| . Hence

d(f, C) ≤ L

4|ρ1|(1− L)
,

which implies that the inequality (2.11) holds.
The rest of the proof is similar to the proof of Theorem 2.2. ¤

Corollary 2.5. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed
vector space with norm ‖ · ‖. Let f : X → Y be a mapping satisfying (2.10). Then
C(x) := N -limn→∞ 4nf( x

2n ) exists for each x ∈ X and defines a quadratic mapping
C : X → Y such that

N (f(x)− C(x), t) ≥ 4|ρ1|(4− 2p)t
4|ρ1|(4− 2p)t + θ‖4x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y) := θ(‖x‖p + ‖y‖p) for
all x, y ∈ X. Then we can choose L = 2p−2, and we get the desired result. ¤
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