• Title/Summary/Keyword: fungi growth inhibition

Search Result 196, Processing Time 0.026 seconds

Biocontrol Potential of Fungal Endophytes against Fusarium oxysporum f. sp. cucumerinum Causing Wilt in Cucumber

  • Abro, Manzoor Ali;Sun, Xiang;Li, Xingchun;Jatoi, Ghulam Hussain;Guo, Liang-Dong
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.598-608
    • /
    • 2019
  • Endophytic fungi have received much attention as plant growth promoters as well as biological control agents against many plant pathogens. In this study, 30 endophytic fungal species, isolated from various plants in China, were evaluated using in vitro dual culture assay against Fusarium oxysporum f. sp. cucumerinum, causing wilt in cucumber. The results of the present study clearly showed that all the 30 endophytic fungal isolates were highly capable of inhibiting the mycelial colony growth of Fusarium oxysporum f. sp. cucumerinum with inhibition % over 66% as compared to control treatments. Among all of them, 5 isolates were highly effective such as, Penicillium sp., Guignardia mangiferae, Hypocrea sp., Neurospora sp., Eupenicillium javanicum, and Lasiodiplodia theobromae, respectively. The Penicillium sp. and Hypocrea sp. were highly effective as compared to other isolates. From in vitro results 10 best isolates were selected for greenhouse studies. The results of the greenhouse studies showed that among all of them 3 endophytic fungal isolates successfully suppressed wilt severity when co-inoculation with pathogen Fusarium. oxysporum f. sp. cucumerinum. The endophytic fungi also enhanced plant growth parameters of the host plants, the antagonistic fungal isolates increased over all plant height, aerial fresh, and dry weight as compared to control.

Anemarrhena asphodeloides Extract Inhibits the Mycelial Growth of Magnaporthe oryzae and Controls the Rice Blast Disease

  • Joo, Myoung Ho;Yeo, Yu Mi;Choi, Pil Son;Lee, Jae Hyeok;Yang, Kwang-Yeol;Lee, Young Jin
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.695-703
    • /
    • 2018
  • Previously, we have reported a plant extract isolated from Lysimachia foenum gracum Herba as a new environment friendly biopesticide that has the mycelial growth inhibition effect on Magnaporthe oryzae, the pathogenic fungus of the rice blast disease. For the finding of additional biopesticide candidate, we tested the mycelial growth inhibitory effects about 700 species of plant extracts on PDA media. Among them, the extract of Anemarrhena asphodeloides showed prominent inhibitory effect of which $IC_{50}$ was $139.7{\mu}g/ml$. Mycelial radii of M. oryzae were measured on PDA medium containing the four organic solvent fractions isolated from total extract from A. asphodeloides. Ethyl acetate fraction showed the impressive inhibitory effect of $IC_{50}$, $54.12{\mu}g/ml$. In the subsequent rice field test for the total extract of A. asphodeloides, we obtained encouraging 62.0% control rate of rice blast disease without any phytotoxicity. It is almost equivalent to that of chemical pesticides implying the applicability of the extract as a new biopesticide. In further study, the analysis of active ingredients of the extract would be necessary for the development of a new biopesticide and for the verification of cellular mechanism by which the mycelial growth of M. oryzae inhibited.

The Roles of Lactic Acid Bacteria for Control of Fungal Growth and Mycotoxins (곰팡이 생육 및 곰팡이 독소 생산의 억제에 있어서의 유산균의 역할)

  • Kim, Jihoo;Lee, Heeseob
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1128-1139
    • /
    • 2020
  • Over recent years, it has become evident that food and agricultural products are easily contaminated by fungi of Aspergillus, Fusarium, and Penicillium due to rapid climate change, which is not only a global food quality concern but also a serious health concern. Owing to consumers' interest in health, resistance to preservatives such as propionic acid and sorbic acid (which have been used in the past) is increasing, so it is necessary to develop a substitute from natural materials. In this review, the role of lactic acid bacteria as a biological method for controlling the growth and toxin production of fungi was examined. According to recent studies, lactic acid bacteria effectively inhibit the growth of fungi through various metabolites such as organic acids with low molecular weight, reuterin, proteinaceous compounds, hydroxy fatty acids, and phenol compounds. Lactic acid bacteria effectively reduced mycotoxin production by fungi via adsorption of mycotoxin with lactic acid bacteria cell surface components, degradation of fungal mycotoxin, and inhibition of mycotoxin production. Lactic acid bacteria could be regarded as a potential anti-fungal and anti-mycotoxigenic material in the prevention of fungal contamination of food and agricultural products because lactic acid bacteria produce various kinds of potent metabolic compounds with anti-fungal activities.

Antimicrobial Properties of Cold-Tolerant Eucalyptus Species against Phytopathogenic Fungi and Food-Borne Bacterial Pathogens

  • Hur, Jae-Seoun;Ahn, Sam-Young;Koh, Young-Jin;Lee, Choong-Il
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.286-289
    • /
    • 2000
  • Mechanol extracts of three cold-tolerant eucalyptus trees-Eucalyptus darlympleana, E. gunnii and E. unigera were screened for antimicrobial activity against twenty two phyto-pathogenic fungi and six food-borne bacterial pathogens. E. unigera showed the antagonistic activity against all the tested pathogens. Among the tested fungal pathogens, Pythium species were highly sensitive to the leaf extracts. Especially, P. vanterpoolii, a causal agent of leaf blight in creeping bentgrass (Agrostis palustris), was completely inhibited by the extracts. The eucalyptus extracts were also effective in inhibiting the fungal growth of Botrytis cinerea and Phomopsis sp. isolated from the lesions of kiwifruit soft rot during post-harvest storage. Escherichia coli O-157 was less sensitive to the inhibition than the other bacterial pathogens tested. It was likely that Gram positive bacteria-Bacillus subtilis and Streptococcus mutans were more sensitive to the eucalyptus extracts than Gram negative bacteria-Escherichia coli, Salmonella enteritidis and Pseudomonas aeruginosa. Our findings suggest that the cold-tolerant eucalyptus species have antimicrobial properties that can serve the development of novel fungitoxic agents or food preservatives.

  • PDF

Antimicrobial Effects of Ocotillone Isolated from Stem Bark of Ailanthus altisshima

  • Lee, Dong-Gun;Chang, Young-Su;Park, Yoon-Kyung;Hahm, Kyung-Soo;Woo, Eun-Rhan
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.854-857
    • /
    • 2002
  • Bioassay-directed chromatographic fractionation of a methylene chloride extract of Ailanthus altisshima indicated the presence of 20(S), 24(R), epoxy-25-hydroxydammarane-3-one (compound 1, ocotillone) which was isolated from this plant, for the first time. Antimicrobial activity of compound 1 was measured by inhibition of bacterial and fungal cells growth and by a hemolytic assay with human erythrocytes, respectively. The results revealed that compound 1 had potent antibacterial activity against Cram-negative bacteria, P. aeruginosa and S. typhimurium, that were without hemolytic activity, whereas it had weak antimicrobial activity against Gram-positive bacteria and fungi. These results demonstrated that the compound 1 has more antibacterial activity against 6ram-negative bacteria, which have no hemolytic activity, than Gram-positive bacteria and fungi. This is the first report on the biological activities of the compound 1.

Control of Fungal Diseases with Antagonistic Bacteria, Bacillus sp. AC-1

  • Park, Yong-Chul-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.50-61
    • /
    • 1994
  • Biological control of important fungal diseases such as Phytophthora blight of red pepper, gary mold rot of vegetables, and powdery mildew of many crops was attempted using an antagonistic bacterium, Bacillus sp. AC-1 in greenhouses and fields. The antagonistic bacterium isolated from the rhizosphere soils of healthy red pepper plant was very effective in the inhibition of mycelial growth of plant pathogenic fungi in vitro including Phytophthora capsici, Rhizoctonia solani, Pyricularia oryzae, Botrytis cinerea, Valsa mali, Fusarium oxysporum, Pythium ultimum, Alternari mali, Helminthosporium oryzae, and Colletotrichum gloeosporioides. Culture filtrate of antagonistic Bacillus sp. AC-1 applied to pot soils infested with Phytophthora capsici suppressed the disease occurrence better than metalaxyl application did until 37 days after treatment in greenhouse tests. Treatments of the bacterial suspension on red pepper plants also reduced the incidence of Phytophthora blight in greenhouse tests. In farmers' commercial production fields, however, the controlling efficacy of the antagonistic bacteria was variable depending on field locations. Gray mold rot of chinese chives and lettuce caused by Botrytis cinerea was also controlled effectively in field tests by the application of Bacillus sp. AC-1 with control values of 79.7% and 72.8%, respectively. Spraying of the bacterial suspension inhibited development of powdery mildew of many crops such as cucumber, tobacco, melon, and rose effectively in greenhouse and field tests. The control efficacy of the bacterial suspension was almost same as that of Fenarimol used as a chemical standard. Further experiments for developing a commercial product from the antagonistic bacteria and for elucidating antagonistic mechanism against plant pathogenic fungi are in progress.

  • PDF

Correlation between Biosurfactants and Antifungal Activity of a Biocontrol Bacterium, Bacillus amyloliquefaciens LM11 (생물적 방제균 Bacillus amyloliquefaciens LM11의 유래 생물계면활성물질과 항균활성과의 상관관계)

  • Kang, Beom Ryong;Kim, Yong Hwan;Nam, Hyo Song;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.23 no.2
    • /
    • pp.177-185
    • /
    • 2017
  • Bacillus amyloliquefaciens LM11 was isolated from the feces of larvae of the rhino beetle and showed strong antifungal activities against various phytopathogenic fungi by producing biosurfactants. In this study, our overall goal was to determine relationship between biosurfactants produced from the LM11 strain and its role in growth inhibition of phytopathogenic fungi. Production and expression levels of B. amyloliquefaciens LM11 biosurfactants were significantly differed depending on growth phases. Transcriptional and biochemical analysis indicated that the biosurfactants of the LM11 strain were greatly enhanced in late log-phase to stationary phase. Inhibitions of phytopathogenic mycelial growth and spore germination were directly correlated (P<0.001, R=0.761) with concentrations of the LM11 cell-free culture filtrates. The minimum inhibitory surface tension of the culture filtrate of the B. amyloliquefaciens LM11 grown in stationary phase to inhibit mycelial growth of the phytopathogenic fungi was 38.5 mN/m (P<0.001, R=0.951-0.977). Our results indicated that the biosurfactants of B. amyloliquefaciens LM11 act as key antifungal metabolites in biocontrol of plant diseases, and measuring surface tension of the cell-free culture fluids can be used as an easy indicator for optimal usage of the biocontrol agents.

Antimicrobial Effects of Ethanol Extracts of Korea Endemic Herb Plants (국내 자생 향장식물 에탄올 추출물의 항균 효과)

  • Cha, Jae-Young;Ha, Se-Eun;Sim, Seon-Mi;Park, Jong-Kun;Chung, Yeon-Ok;Kim, Hyun-Joong;Park, Nou-Bog
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.228-233
    • /
    • 2008
  • Antimicrobial activities of ethanol extracts of about 60 endemic Korean herbs and medicinal plants were investigated. When compared to the group treated with phenoxyethanol as a positive control, the growth of Pseudomonas aeruginosa was inhibited by Styrax japonica, Stevia rebaudiana, Morus Leaf, Coptis chinensis and Slavia miltorrhiza Bunge, the latter showing the strongest inhibition (97%). The growth of Staphylococcus aureus was inhibited by Acorus calamus, Pinus densiflora, Ginkgo biloba, Dryopteris crassirhizoma, Chrysanthemum zawadskii, Slavia miltorrhiza Bunge and Coptis chinensis, the latter showing the strongest inhibition (99%). The growth of yeast type fungi Candida albicans was inhibited to about 35% by Scutellaria baicalensis Geogr and about 33% by Coptis chinensis as determined by paper disk method. The growth of bacterium Malassezia furfur was inhibited by Paeonia lactiflora, Rosa multiflora, Coptis chinensis, Citrus aurantium L. subsp, Paeonia suffruticosa Andrews, and Galla rhois, the latter showing the strongest inhibition (57%). The growth of Propionibacterium acnes was inhibited by Galla rhois, Paeonia lactiflora, Morus bombycis, Cucumis sativus, Stevia rebaudiana, Coptis chinensis and Slavia miltorrhiza Bunge. Interestingly, Coptis chinensis and Slavia miltorrhiza Bunge showed the strongest inhibition (99%) similar to that in postive control. The possible components and their action modes were suggested and discussed.

Biocidal Activity of Metal Nanoparticles Synthesized by Fusarium solani against Multidrug-Resistant Bacteria and Mycotoxigenic Fungi

  • Sayed, Manal T. El;El-Sayed, Ashraf S.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.226-236
    • /
    • 2020
  • Antibiotic resistance by pathogenic bacteria and fungi is one of the most serious global public health problems in the 21st century, directly affecting human health and lifestyle. Pseudomonas aeruginosa and Staphylococcus aureus with strong resistance to the common antibiotics have been isolated from Intensive Care Unit patients at Zagazig Hospital. Thus, in this study we assessed the biocidal activity of nanoparticles of silver, copper and zinc synthesized by Fusarium solani KJ 623702 against these multidrug resistant-bacteria. The synthesized Metal Nano-particles (MNPs) were characterized by UV-Vis spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Zeta potential. The Fourier transform infrared spectroscopy (FTIR) result showed the presence of different functional groups such as carboxyl, amino and thiol, ester and peptide bonds in addition to glycosidic bonds that might stabilize the dispersity of MNPs from aggregation. The antimicrobial potential of MNPs by F. solani against the multidrug-resistant (MDR) P. aeruginosa and S. aureus in addition to the mycotoxigenic Aspergillus awamori, A. fumigatus and F. oxysporum was investigated, based on the visual growth by diameter of inhibition zone. Among the synthesized MNPs, the spherical AgNPs (13.70 nm) displayed significant effect against P. aeruginosa (Zone of Inhibition 22.4 mm and Minimum Inhibitory Concentration 21.33 ㎍/ml), while ZINC oxide Nano-Particles were the most effective against F. oxysporum (ZOI, 18.5 mm and MIC 24.7 ㎍/ml). Transmission Electron Microscope micrographs of AgNP-treated P. aeruginosa showed cracks and pits in the cell wall, with internalization of NPs. Production of pyocyanin pigment was significantly inhibited by AgNPs in a concentration-dependent manner, and at 5-20 ㎍ of AgNPs/ml, the pigment production was reduced by about 15-100%, respectively.

Effect of method of synthesis on antifungal ability of ZnO nanoparticles: Chemical route vs green route

  • Patino-Portela, Melissa C.;Arciniegas-Grijalba, Paola A.;Mosquera-Sanchez, Lyda P.;Sierra, Beatriz E. Guerra;Munoz-Florez, Jaime E.;Erazo-Castillo, Luis A.;Rodriguez-Paez, Jorge E.
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.191-210
    • /
    • 2021
  • To compare the antifungal effect of two nanomaterials (NMs), nanoparticles of zinc oxide were synthesized by a chemical route and zinc oxide-based nanobiohybrids were obtained using green synthesis in an extract of garlic (Allium sativum). The techniques of X-Ray Diffraction (XRD), Infrared (IR) and Ultraviolet Visible (UV-Vis) absorption spectroscopies and Scanning (SEM) and Transmission Electron Microscopies (TEM) were used to determine the characteristics of the nanomaterials synthesized. The results showed that the samples obtained were of nanometric size (< 100 nm). To compare their antifungal capacity, their effect on Cercospora sp. was evaluated. Test results showed that both nanomaterials had an antifungal capacity. The nanobiohybrids (green route) gave an inhibition of fungal growth of ~72.4% while with the ZnO-NPs (chemical route), inhibition was ~87.1%. Microstructural studies using High Resolution Optical Microscopy (HROM) and ultra-structural analysis using TEM carried out on the treated strains demonstrated the effect of the nanofungicides on the vegetative and reproductive structures, as well as on their cell wall. To account for the antifungal effect presented by ZnO-NPs and ZnO nanobiohybrids on the fungi tested, effects reported in the literature related to the action of nanomaterials on biological entities were considered. Specifically, we discuss the electrical interaction of the ZnO-NPs with the cell membrane and the biomolecules (proteins) present in the fungi, taking into account the n-type nature of the ZnO semiconductor and the electrical behavior of the fungal cell membrane and that of the proteins that make up the protein crown.