Browse > Article
http://dx.doi.org/10.12989/anr.2020.10.2.191

Effect of method of synthesis on antifungal ability of ZnO nanoparticles: Chemical route vs green route  

Patino-Portela, Melissa C. (Grupo de Investigacion en Microscopia y Analisis de Imagenes (GIMAI), Universidad del Cauca)
Arciniegas-Grijalba, Paola A. (Grupo de Investigacion en Microscopia y Analisis de Imagenes (GIMAI), Universidad del Cauca)
Mosquera-Sanchez, Lyda P. (Grupo de Investigacion en Microscopia y Analisis de Imagenes (GIMAI), Universidad del Cauca)
Sierra, Beatriz E. Guerra (Grupo de Investigacion en Biotecnologia Agroambiente y Salud-Microbiota, Universidad de Santander)
Munoz-Florez, Jaime E. (Grupo de Investigacion en Diversidad Biologica, Universidad Nacional de Colombia)
Erazo-Castillo, Luis A. (Grupo de Investigacion en Ciencia y Tecnologia de Materiales Ceramicos (CYTEMAC) Departamento de Fisica, Universidad del Cauca)
Rodriguez-Paez, Jorge E. (Grupo de Investigacion en Ciencia y Tecnologia de Materiales Ceramicos (CYTEMAC) Departamento de Fisica, Universidad del Cauca)
Publication Information
Advances in nano research / v.10, no.2, 2021 , pp. 191-210 More about this Journal
Abstract
To compare the antifungal effect of two nanomaterials (NMs), nanoparticles of zinc oxide were synthesized by a chemical route and zinc oxide-based nanobiohybrids were obtained using green synthesis in an extract of garlic (Allium sativum). The techniques of X-Ray Diffraction (XRD), Infrared (IR) and Ultraviolet Visible (UV-Vis) absorption spectroscopies and Scanning (SEM) and Transmission Electron Microscopies (TEM) were used to determine the characteristics of the nanomaterials synthesized. The results showed that the samples obtained were of nanometric size (< 100 nm). To compare their antifungal capacity, their effect on Cercospora sp. was evaluated. Test results showed that both nanomaterials had an antifungal capacity. The nanobiohybrids (green route) gave an inhibition of fungal growth of ~72.4% while with the ZnO-NPs (chemical route), inhibition was ~87.1%. Microstructural studies using High Resolution Optical Microscopy (HROM) and ultra-structural analysis using TEM carried out on the treated strains demonstrated the effect of the nanofungicides on the vegetative and reproductive structures, as well as on their cell wall. To account for the antifungal effect presented by ZnO-NPs and ZnO nanobiohybrids on the fungi tested, effects reported in the literature related to the action of nanomaterials on biological entities were considered. Specifically, we discuss the electrical interaction of the ZnO-NPs with the cell membrane and the biomolecules (proteins) present in the fungi, taking into account the n-type nature of the ZnO semiconductor and the electrical behavior of the fungal cell membrane and that of the proteins that make up the protein crown.
Keywords
ZnO nanofungicides; green synthesis; chemical synthesis; antifungal capacity; phenomenological model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Muhsin, T.M., Al-Zubaidy, S.R. and Ali, E.T. (2001), "Effect of garlic bulb extract on the growth and enzymatic activities of rhizosphere and rhizoplane fungi", Mycopathologia, 152, 143-146. https://doi.org/10.1023/A:1013184613159.   DOI
2 Namvar, F., Rahman, H.S., Mohamad, R., Susan Azizi, S., Tahir, P.M., Chartrand, M.S. and Yeap, S.K. (2015), "Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines", Evid. Based Complementary Altern. Med., 2015, 593014. http://dx.doi.org/10.1155/2015/593014.   DOI
3 Narayan, S., Muldoon, J., Finn, M.G., Fokin, V.V, Kolb, H.C. and Sharpless, K.B. (2005), "Cover picture: 'on water': Unique reactivity of organic compounds in aqueous suspension (Angew. Chem. Int. ed. 21/2005)", Angew. Chem. Int. Ed., 44, 3157-3157. https://doi.org/10.1002/anie.200590069.   DOI
4 Kumar, A. and Kumar, J. (2008b), "On the synthesis and optical absorption studies of nano-size magnesium oxide powder", J. Phys. Chem. Solids, 69, 2764-2772. https://doi.org/10.1016/j.jpcs.2008.06.143.   DOI
5 Trost, B.M. (1991), "The atom economy-a search for synthetic efficiency", Science, 254, 1471-1477. https://doi.org/10.1126/science.1962206.   DOI
6 Timonin, M.I. and Thexton, R.H. (1951), "The rhizosphere effect of onion and garlic on soil microflora1", Soil Sci. Soc. Am. J., 15, 186. https://doi.org/10.2136/sssaj1951.036159950015000C0042x.   DOI
7 Jagadish, C. and Pearton, S.J. (2006), Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications, Elsevier, Amsterdam, Netherlands.
8 Janotti, A. and Van de Walle, C.G. (2009), "Fundamentals of zinc oxide as a semiconductor", Rep. Prog. Phys., 72, 126501. https://doi.org/10.1088/0034-4885/72/12/126501.   DOI
9 Jayaram, D.T., Runa, S., Kemp, M.L. and Payne, C.K. (2017), "Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells", Nanoscale, 9, 7595-7601. https://doi.org/10.1039/C6NR09500C.   DOI
10 Guo, Z., Ambrosio, F., Chen, W., Gono, P. and Pasquarello, A. (2018), "Alignment of redox levels at semiconductor-water interfaces", Chem. Mater., 30, 94-111. https://doi.org/10.1021/acs.chemmater.7b02619.   DOI
11 Nealon, G.L., Donnio, B., Greget, R., Kappler, J.P., Terazzi, E. and Gallani, J.L. (2012), "ChemInform abstract: Magnetism in gold nanoparticles", ChemInform, 43, 44. https://doi.org/10.1002/chin.201244226.   DOI
12 Nel, A., Xia, T., Madler, L. and Li, N. (2006), "Toxic potential of materials at the nanolevel", Science, 311, 622-627. https://doi.org/10.1126/science.1114397.   DOI
13 Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Castranova, V. and Thompson, M. (2009), "Understanding biophysicochemical interactions at the nano-bio interface", Nat. Mater., 8, 543-557. https://doi.org/10.1038/nmat2442.   DOI
14 Nosaka, Y. and Nosaka, A.Y. (2017), "Generation and detection of reactive oxygen species in photocatalysis", Chem. Rev., 117, 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161.   DOI
15 Prasad, R. (2016), Advances and Applications Through Fungal Nanobiotechnology, Fungal Biology, Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-42990-8.
16 Nozik, A.J. and Memming, R. (1996), "Physical chemistry of semiconductor-liquid interfaces", J. Phys. Chem., 100, 13061-13078. https://doi.org/10.1021/jp953720e.   DOI
17 Parveen, K., Banse, V. and Ledwani, L. (2016), "Green synthesis of nanoparticles: Their advantages and disadvantages", AIP Conf. Proc., 1724, 020048. https://doi.org/10.1063/1.4945168.
18 Piella, J., Bastus, N.G. and Puntes, V. (2017), "Size-dependent protein-nanoparticle interactions in citrate-stabilized gold nanoparticles: The emergence of the protein corona", Bioconjug. Chem., 28, 88-97. https://doi.org/10.1021/acs.bioconjchem.6b00575.   DOI
19 Aala, F., Yusuf, U.K., Nulit, R. and Rezaie, S. (2014), "Inhibitory effect of allicin and garlic extracts on growth of cultured hyphae", Iran. J. Basic Med. Sci., 17, 150.
20 Arciniegas-Grijalba, P.A., Patino-Portela, M.C., Mosquera-Sanchez, L.P., Guerrero-Vargas, J.A. and Rodriguez-Paez, J.E. (2017), "ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor", Appl. Nanosci., 7, 225-241. https://doi.org/10.1007/s13204-017-0561-3.   DOI
21 Abd-Elsalam, K.A. and Alghuthaymi, M.A. (2015), "Nanobio-fungicides: Are they the next-generation of fungicides", J. Nanotech. Mater. Sci., 2, 1-3. https://doi.org/10.15436/2377-1372.15.0.   DOI
22 Lopez, C. and Rodriguez-Paez, J.E. (2017), "Synthesis and characterization of ZnO nanoparticles: Effect of solvent and antifungal capacity of NPs obtained in ethylene glycol.", Appl. Phys. A, 123, 748-764. https://doi.org/10.1007/s00339-017-1339-x.   DOI
23 Lynch, I., Cedervall, T., Lundqvist, M., Cabaleiro-Lago, C., Linse, S. and Dawson, K.A. (2007), "The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century", Adv. Colloid Interface Sci., 134-135, 167-174. https://doi.org/10.1016/j.cis.2007.04.021.   DOI
24 Mahmoudi, M., Bertrand, N., Zope, H. and Farokhzad, O.C. (2016), "Emerging understanding of the protein corona at the nano-bio interfaces", Nano Today, 11, 817-832. https://doi.org/10.1016/j.nantod.2016.10.005.   DOI
25 Agarwal, H., Venkat Kumar, S. and Rajeshkumar, S. (2017), "A review on green synthesis of zinc oxide nanoparticles - an ecofriendly approach", Resour. Technol., 3, 406-413. https://doi.org/10.1016/j.reffit.2017.03.002.   DOI
26 Tripathi, D.K., Ahmad, P., Sharma, S., Chauhan, D.K. and Dubey, N.K. (2017), Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies, Elsevier, London, UK.
27 Kharissova, O.V., Dias, H.V.R., Kharisov, B.I., Perez, B.O. and Perez, V.M.J. (2013), "The greener synthesis of nanoparticles", Trends Biotechnol., 31, 240-248. https://doi.org/10.1016/j.tibtech.2013.01.003.   DOI
28 Kisch, H. (2014), Semiconductor Photocatalysis: Principles and Applications, Wiley, Weinheim, Germany.
29 Klingshirn, C. (2007), "ZnO: From basics towards applications", Phys. Status Solidi, 244, 3027-3073. https://doi.org/10.1002/pssb.200743072.   DOI
30 Hartono, D., Hody Yang, K.L. and Lanry Yung, L.Y. (2010), "The effect of cholesterol on protein-coated gold nanoparticle binding to liquid crystal-supported models of cell membranes", Biomaterials, 31, 3008-3015. https://doi.org/10.1016/j.biomaterials.2010.01.003.   DOI
31 Demongeot, A., Mougnier, S.J., Okada, S., Soulie-Ziakovic, C. and Tournilhac, F. (2016), "Coordination and catalysis of Zn2+ in epoxy-based vitrimers", Polym. Chem., 7, 4486-4493. https://doi.org/10.1039/C6PY00752J.   DOI
32 Djurisic, A.B. and Leung, Y.H. (2006), "Optical properties of ZnO nanostructures", Small, 2, 944-961. https://doi.org///doi.org/10.1002/smll.200600134.   DOI
33 Woll, C. (2007), "The chemistry and physics of zinc oxide surfaces", Prog. Surf. Sci., 82, 55-120. https://doi.org/10.1016/j.progsurf.2006.12.002.   DOI
34 Umar, H., Kavaz, D. and Rizaner, N. (2019), "Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines", Int. J. Nanomed., 14, 87-100. https://doi.org/10.2147/IJN.S186888.   DOI
35 Unal, R., Yousef, A.E. and Dunne, C.P. (2002), "Spectrofluorimetric assessment of bacterial cell membrane damage by pulsed electric field", Innov. Food Sci. Emerg. Technol., 3, 247-254. https://doi.org/10.1016/S1466-8564(02)00033-4.   DOI
36 Virkutyte, J. and Varma, R.S. (2013), Sustainable Nanotechnology and the Environment: Advances and Achievements, ACS Publications, Washington. USA. https://doi.org/10.1021/bk-2013-1124.ch002.
37 Xing, B., Vecitis, C.D. and Senesi, N. (2016), Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Toxicity, John Wiley & Sons, Hoboken, USA. https://doi.org/10.1002/9781119275855.
38 Yang, L., Wang, J. and Xiang, L. (2015), "Hydrothermal synthesis of ZnO whiskers from ɛ-Zn(OH)2 in NaOH/Na2SO4 solution", Particuology, 19, 113-117. https://doi.org/10.1016/j.partic.2014.06.010.   DOI
39 Yoshida, S., Kasuga, S., Hayashi, N., Ushiroguchi, T., Matsuura, H. and Nakagawa, S. (1987), "Antifungal activity of ajoene derived from garlic", Appl. Environ. Microbiol., 53, 615-617.   DOI
40 Zar, J.H. (2014), Bioestatistical Analysis, Pearson Education Limited, Harlow, UK.
41 Fleischer, C.C. and Payne, C.K. (2014), "Nanoparticle-cell interactions: Molecular structure of the protein corona and cellular outcomes", Acc. Chem. Res., 47, 2651-2659. https://doi.org/10.1021/ar500190q.   DOI
42 Dobrucka, R. and Dlugaszewska, J. (2016), "Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract", Saudi. J. Biol. Sci., 23, 517-523. https://doi.org///doi.org/10.1016/j.sjbs.2015.05.016.   DOI
43 Feofilova, E.P. (2010), "The fungal cell wall: Modern concepts of its composition and biological function", Microbiology, 79, 711-720. https://doi.org/10.1134/S0026261710060019.   DOI
44 Fievet, F. and Brayner, R. (2013), Nanomaterials: A Danger or a Promise?, Springer, London, UK. https://doi.org/10.1007/978-1-4471-4213-3.
45 Gerischer, H. (1990), "The impact of semiconductors on the concepts of electrochemistry", Electrochim. Acta, 35(11-12), 1677-1699. https://doi.org/10.1016/0013-4686(90)87067-C.   DOI
46 Glatz, M., Schroffenegger M., Weil, M. and Karl Kirchner, K. (2016), "Crystal structure of hexakis (dimethyl sulfoxide-κO) manganese(II) diiodide", Acta Cryst., 72, 904-906. http://dx.doi.org/10.1107/S2056989016008896.   DOI
47 Punnoose, A., Dodge, K., Rasmussen, J., Chess, J., Wingett, D. and Anders, C. (2014), "Cytotoxicity of ZnO nanoparticles can be tailored by modifying their surface structure: A green chemistry approach for safer nanomaterials", ACS Sustain. Chem. Eng., 2(7), 1666-1673. http://dx.doi.org/10.1021/sc500140x.   DOI
48 Qian, Y., Yao, J., Russel, M., Chen, K. and Wang, X. (2015), "Characterization of green synthesized nano-formulation (ZnO-A. vera) and their antibacterial activity against pathogens", Environ. Toxicol. Pharmacol., 39, 736-746. https://doi.org/10.1016/j.etap.2015.01.015.   DOI
49 Rideout, D.C. and Breslow, R. (1980), "Hydrophobic acceleration of Diels-Alder reactions", J. Am. Chem. Soc., 102, 7816-7817. https://doi.org/10.1021/ja00546a048.   DOI
50 Ray, P.C., Yu, H. and Fu, P.P. (2009), "Toxicity and environmental risks of nanomaterials: Challenges and future needs", J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 27, 1-35. https://doi.org/10.1080/10590500802708267.   DOI
51 Rodriguez-Paez, J., Caballero, A., Villegas, M., Moure, C., Duran, P. and Fernandez, J. (2001), "Controlled precipitation methods: Formation mechanism of ZnO nanoparticles", J. Eur. Ceram. Soc., 21, 925-930. https://doi.org/10.1016/S0955-2219(00)00283-1.   DOI
52 Martins, N., Petropoulos, S. and Ferreira, I.C.F.R. (2016), "Chemical composition and bioactive compounds of garlic (Allium sativum L) as affected by pre- and post-harvest conditions: A review", Food Chem., 211, 41-50. http://dx.doi.org/10.1016/j.foodchem.2016.05.029.   DOI
53 Matinise, N., Fuku, X.G., Kaviyarasu, K., Mayedwa, N. and Maaza, M. (2017), "ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties and mechanism of formation", Appl. Surf. Sci., 406, 339-347. http://dx.doi.org/10.1016/j.apsusc.2017.01.219.   DOI
54 Ali, K., Dwivedi, S., Azam, A., Saquib, Q., Al-Said, M.S., Alkhedhairy, A.A. and Musarrat, J. (2016), "Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates", J. Colloid Interface Sci., 472, 145-156. https://doi.org/doi.org/10.1016/j.jcis.2016.03.021.   DOI
55 Ahmed, S., Annu Chaudhry, S.A. and Ikram, S. (2017), "A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry", J. Photochem. Photobiol. B Biol., 166, 272-284. https://doi.org/10.1016/j.jphotobiol.2016.12.011.   DOI
56 Ahrland, S., Chatt, J. and Davies N.R. (1958), "The relative affinities of ligand atoms for acceptor molecules and ions", Q. Rev. Chem. Soc., 12, 265-276. https://doi.org/10.1039/QR9581200265.   DOI
57 Aladpoosh, R. and Montazer, M. (2015), "The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: Mechanism, characterizations and features", Carbohydr. Polym., 126, 122-129. https://doi.org/10.1016/j.carbpol.2015.03.036.   DOI
58 Kumar, R., Umar, A., Kumar, G. and Nalwa, H.S. (2017), "Antimicrobial properties of ZnO nanomaterials: A review", Ceram. Int., 43, 3940-3961. https://doi.org/10.1016/j.ceramint.2016.12.062.   DOI
59 Lead, J.R. and Smith, E.L. (2009), Environmental and Human Health Impacts of Nanotechnology, John Wiley & Sons, Chichester, UK. https://doi.org/10.1002/9781444307504.
60 Klingshirn, C.F., Waag, A., Hoffmann, A. and Geurts, J. (2010), Zinc Oxide: From Fundamental Properties towards Novel Applications, Springer Science and Business Media, Berlin, Germany.
61 Kolodziejczak-Radzimska, A. and Jesionowski, T. (2014), "Zinc oxide-from synthesis to application: A review", Materials, 7, 2833-2881. https://doi.org/10.3390/ma7042833.   DOI
62 Kopp, M., Kollenda, S. and Epple, M. (2017), "Nanoparticle-protein interactions: Therapeutic approaches and supramolecular chemistry", Acc. Chem. Res., 50, 1383-1390. https://doi.org/10.1021/acs.accounts.7b00051.   DOI
63 Krupa, A. and Vimala, R. (2016), "Evaluation of tetraethoxysilane (TEOS) sol-gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling", Mater. Sci. Eng. C, 61, 728-735. https://doi.org/10.1016/j.msec.2016.01.013   DOI
64 Kumar, A. and Kumar, J. (2008a), "Defect and adsorbate induced infrared modes in sol-gel derived magnesium oxide nano-crystallites", Solid State Commun., 147, 405-408. https://doi.org/10.1016/j.ssc.2008.06.014.   DOI
65 Khan, I., Saeed, K. and Khan, I. (2017), "Nanoparticles: Properties, applications and toxicities", Arab. J. Chem., 12(7), 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011.   DOI
66 Kharazian, B., Hadipour, N.L. an Ejtehadi, M.R., (2016), "Understanding the nanoparticle-protein corona complexes using computational and experimental methods", Int. J. Biochem. Cell Biol.,75, 162-174. https://doi.org/10.1016/j.biocel.2016.02.008.   DOI
67 Jedsukontorn, T., Ueno, T., Saito, N. and Hunsom, M. (2018), "Mechanistic aspect based on the role of reactive oxidizing species (ROS) in macroscopic level on the glycerol photooxidation over defected and defected-free TiO2", J. Photochem. Photobiol. A Chem., 367, 270-281. https://doi.org/10.1016/j.jphotochem.2018.08.030.   DOI
68 Gow, N.A.R., Latge, J.P. and Munro, C.A. (2017), The Fugal Kingdom, ASM Press, Washington, USA. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.
69 Guo, J. and Peng, C. (2015), "Synthesis of ZnO nanoparticles with a novel combustion method and their C2H5OH gas sensing properties", Ceram. Int., 41, 2180-2186. https://doi.org/10.1016/j.ceramint.2014.10.017.   DOI
70 Lear, T., Marshall, R., Antonio Lopez-Sanchez, J., Jackson, S.D., Klapotke, T.M., Baumer, M., Rupprechter, G., Freund, H.J. and Lennon, D. (2005), "The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts", J. Chem. Phys., 123, 174706. https://doi.org///doi.org/10.1063/1.2101487.   DOI
71 Zhang, Z. and Yates, J.T. (2010), "Effect of adsorbed donor and acceptor molecules on electron stimulated desorption: O2/TiO2(110)", J. Phys. Chem. Lett., 1, 2185-2188. https://doi.org/10.1021/jz1007559.   DOI
72 Zhang, X. and Yang, S. (2011), "Nonspecific adsorption of charged quantum dots on supported zwitterionic lipid bilayers: Real-time monitoring by quartz crystal microbalance with dissipation", Langmuir, 27, 2528-2535. https://doi.org/10.1021/la104449y.   DOI
73 Zhang, Z. and Yates, J.T. (2012), "Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces", Chem. Rev., 112, 5520-5551. https://doi.org/10.1021/cr3000626.   DOI
74 Romashchenko, A.V., Kan, T.W., Petrovski, D.V., Gerlinskaya, L.A., Moshkin, M.P. and Moshkin, Y.M. (2017), "Nanoparticles associate with intrinsically disordered RNA-binding proteins", ACS Nano, 11, 1328-1339. https://doi.org/10.1021/acsnano.6b05992.   DOI
75 Romero de Perez, G. (2003), "Microscopia electronica de transmision (MET) area biomedica: teoria y practica [Electron microscopy of transmission (TEM) biomedical area: theory and practice]", Acad. Colomb. Defic. exactas fisicas y Nat. Coleccion Julio Carrizosa Val, 12, 207 (in Spanish).
76 Saptarshi, S.R., Duschl, A. and Lopata, A.L. (2013), "Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle", J. Nanobiotechnol., 11, 26. https://doi.org/10.1186/1477-3155-11-26.   DOI
77 Crabtree, R.H. (2004), "Organometallic alkane CH activation", J. Organomet. Chem., 689, 4083-4091. https://doi.org/10.1016/j.jorganchem.2004.07.034.   DOI
78 Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A. and Stark, W.J. (2006), "In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility", Environ. Sci. Technol., 40, 4374-4381. https://doi.org/10.1021/es052069i.   DOI
79 Buzea, C., Pacheco, I.I. and Robbie, K. (2007), "Nanomaterials and nanoparticles: Sources and toxicity". Biointerphases, 2, 17-71. https://doi.org/10.1116/1.2815690.   DOI
80 Casals, E. and Puntes, V.F. (2012), "Inorganic nanoparticle biomolecular corona: Formation, evolution and biological impact", Nanomedicine, 7(12), 1917-1930. https://doi.org/10.2217/nnm.12.169.   DOI
81 Cui, X., Yin, J., Lin, Y., Li, N., Wang, M. and Shen, D., (2016), "Towards a definition of harmless nanoparticles from an environmental and safety perspective", J. Chem., 2016, 1-12. https://doi.org/10.1155/2016/8608567.   DOI
82 Dakhlaoui, A., Jendoubi, M., Smiri, L.S., Kanaev, A. and Jouini, N. (2009), "Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology", J. Cryst. Growth, 311, 3989-3996. https://doi.org/10.1016/j.jcrysgro.2009.06.028.   DOI
83 Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. and Israelachvili, J. (2008), "The role of interparticle and external forces in nanoparticle assembly", Nat. Mater., 7, 527-538. https://doi.org/10.1038/nmat2206.   DOI
84 Miri, A., Sarani, M., Hashemzadeh, A., Mardani, Z. and Darroudi, M. (2018), "Biosynthesis and cytotoxic activity of lead oxide nanoparticles", Green Chem. Lett. Rev., 11(4), 567-572. https://doi.org/10.1080/17518253.2018.1547926.   DOI
85 Li, C.J. and Trost, B.M. (2008), "Green chemistry for chemical synthesis", Proc. Natl. Acad. Sci., 105, 13197-13202. https://doi.org/10.1073/pnas.0804348105.   DOI
86 Shapiro, S. and Caspi, E. (1998), "The steric course of enzymic hydroxylation at primary carbon atoms", Tetrahedron, 54, 5005-5040. https://doi.org/10.1002/chin.199831320.   DOI
87 Shapiro, S. and Caspi, E. (2010), "ChemInform abstract: The steric course of enzymic hydroxylation at primary carbon atoms", ChemInform, 29, 5005-5040. https://doi.org/10.1002/chin.199831320.   DOI
88 Miri, A., Khatami, M., Ebrahimy, O. and Sarani, M. (2020), "Cytotoxic and antifungal studies of biosynthesized zinc oxide nanoparticles using extract of Prosopis farcta fruit", Green Chem. Lett. Rev., 13(1), 27-33. https://doi.org/10.1080/17518253.2020.1717005.   DOI
89 Ledezma, E. and Apitz-Castro, R. (2006), "Ajoene, el principal compuesto activo derivado del ajo (Allium sativum), un nuevo agente antifungico", Rev. Iberoam. Micol., 23, 75-80. https://doi.org/10.1016/S1130-1406(06)70017-1.   DOI
90 Li, C.J. (2016), "Reflection and perspective on green chemistry development for chemical synthesis-Daoist insights", Green Chem., 18, 1836-1838. https://doi.org/10.1039/C6GC90029A.   DOI
91 Li, J., Sang, H., Guo, H., Popko, J.T., He, L., White, J.C., Parkash Dhankher, O., Jung, G. and Xing, B. (2017), "Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa", Nanotechnology, 28, 155101. https://doi.org/10.1088/1361-6528/aa61f3.   DOI
92 Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z.K., Hassan, D. and Maaza, M. (2017), "Sageretia thea (Osbeck) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential", Artif. Cells Nanomed. Biotechnol., 46(4), 838-852. https://doi.org/10.1080/21691401.2017.1345928.   DOI
93 Kairyte, K., Kadys, A. and Luksiene, Z. (2013), "Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension", J. Photochem. Photobiol. B Biol., 128, 78-84. https://doi.org/10.1016/j.jphotobiol.2013.07.017.   DOI
94 Kapteyn, J.C., Van Den Ende, H. and Klis, F.M. (1999), "The contribution of cell wall proteins to the organization of the yeast cell wall", Biochim. Biophys. Acta Gen. Subj., 1426, 373-383. https://doi.org/10.1016/S0304-4165(98)00137-8.   DOI
95 Kelly, P.M., Aberg, C., Polo, E., O'Connell, A., Cookman, J., Fallon, J., Krpetic, Z. and Dawson, K.A. (2015), "Mapping protein binding sites on the biomolecular corona of nanoparticles", Nat. Nanotechnol., 10, 472-479. https://doi.org/10.1038/nnano.2015.47.   DOI
96 Moharram, A.H., Mansour, S.A., Hussein, M.A. and Rashad, M. (2014), "Direct precipitation and characterization of ZnO nanoparticles", J. Nanomater., 2014, 1-5. https://doi.org/10.1155/2014/716210.   DOI
97 De Lucas-Gil, E., Reinosa, J.J., Neuhaus, K., Vera-Londono, L., Martin-Gonzalez, M., Fernandez, J.F. and Rubio-Marcos, F. (2017), "Exploring new mechanisms for effective antimicrobial materials: Electric contact-killing based on multiple Schottky barriers", ACS Appl. Mater. Interfaces, 9(31), 26219-26225. https://doi.org/10.1021/acsami.7b09695.   DOI
98 Lichterman, M.F., Hu, S., Richter, M.H., Crumlin, E.J., Axnanda, S., Favaro, M., Drisdell, W., Hussain, Z., Mayer, T., Brunschwig, B.S., Lewis, N.S., Liu, Z. and Lewerenz, H.J. (2015), "Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy", Energy Environ. Sci., 8, 2409-2416. https://doi.org/10.1039/C5EE01014D.   DOI
99 Linder, M.B. (2009), "Hydrophobins: Proteins that self assemble at interfaces", Curr. Opin. Colloid Interface Sci., 14, 356-363. https://doi.org/10.1016/j.cocis.2009.04.001.   DOI
100 Mitchnick, M.A., Fairhurst, D. and Pinnell, S.R. (1999), "Microfine zinc oxide (Z-cote) as a photostable UVA/UVB sunblock agent", J. Am. Acad. Dermatol., 40, 85-90. https://doi.org///doi.org/10.1016/S0190-9622(99)70532-3.   DOI
101 Sheldon, R.A. (2005), "Green solvents for sustainable organic synthesis: State of the art", Green Chem., 7, 267. https://doi.org/10.1039/b418069k.   DOI
102 Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Jan, S.A., Shinwari, Z.K. and Maaza, M. (2020a), "Bioinspired synthesis of pure massicot phase lead oxide nanoparticles and assessment of their biocompatibility, cytotoxicity and in-vitro biological properties", Arab. J. Chem., 13, 916-931. http://dx.doi.org/10.1016/j.arabjc.2017.08.009.   DOI
103 Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z.K. and Maaza, M. (2020b), "Physical properties, biological applications and biocompatibility studies on biosynthesized single-phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck)", Arab. J. Chem., 13, 606-619. http://dx.doi.org/10.1016/j.arabjc.2017.07.004.   DOI
104 Sharma, D., Rajput, J., Kaith, B.S., Kaur, M. and Sharma, S. (2010), "Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties", Thin Solid Films, 519, 1224-1229. https://doi.org/10.1016/j.tsf.2010.08.073.   DOI
105 Singh, K.R.B., Nayak, V., Tanushri Sarkar, T. and Singh R.P. (2020), "Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application", RSC Adv., 10, 27194-27214. https://doi.org/10.1039/d0ra04736h.   DOI
106 Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H. and Mohamad, D. (2015), "Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism", Nano-Micro Lett., 7, 219-242. https://doi.org/10.1007/s40820-015-0040-x.   DOI
107 Stankic, S., Sternig, A., Finocchi, F., Bernardi, J., Diwald, O., (2010), "Zinc oxide scaffolds on MgO nanocubes", Nanotechnology, 21, 355603. https://doi.org/10.1088/0957-4484/21/35/355603.   DOI
108 Arndtsen, B.A., Bergman, R.G., Mobley, T.A. and Peterson, T.H. (1995), "Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution", Acc. Chem. Res., 28, 154-162. https://doi.org/10.1021/ar00051a009.   DOI
109 De Lucas-Gil, E., Leret, P., Monte-Serrano, M., Reinosa, J.J., Enriquez, E., Del Campo, A., Canete, M., Menendez, J., Fernandez, J.F. and Rubio-Marcos, F. (2018), "ZnO nanoporous spheres with broad-spectrum antimicrobial activity by physicochemical interactions", ACS Appl. Nano Mater., 1, 3214-3225. https://doi.org/10.1021/acsanm.8b00402.   DOI
110 Arciniegas-Grijalba, P.A., Patino-Portela, M.C., Mosquera-Sanchez, L.P., Guerra Sierra, B.E., Munoz-Florez, J.E., Erazo-Castillo, L.A. and Rodriguez-Paez, J.E. (2019), "ZnO-based nanofungicides: Synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp", Mater. Sci. Eng. C, 98, 808-825. https://doi.org/10.1016/j.msec.2019.01.031.   DOI
111 Avila, H., Cruz, M., Villegas, M., Caballero, C. and Rodriguez-Paez, J.E. (2004), "Estudio comparativo de dos metodos de sintesis para la obtencion de polvos ceramicos de ZnO-Pr[Comparative study of two methods of synthesis to obtain ceramic powders of ZnO - Pr]", Bol. Soc. Esp. Ceram., 43, 740-744 (in Spanish).   DOI
112 Bak, T., Nowotny, J., Sucher, N.J. and Wachsman, E. (2011), "Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (Rutile) with oxygen, water and bacteria", J. Phys. Chem. C, 115, 15711-15738. https://doi.org/10.1021/jp2027862.   DOI
113 Alwan, R.M., Kadhim, Q.A., Sahan, K.M., Ali, R.A., Mahdi, R.J., Kassim, N.A. and Jassim, A.N. (2015), "Synthesis of zinc oxide nanoparticles via sol-gel route and their characterization", Nanosci. Nanotechnol., 5, 1-6. https://doi.org/10.5923/j.nn.20150501.01.   DOI
114 Basolo, F. and Johnson, R.C. (1967), "Quimica de los compuestos de coordinacion[Coordination Chemistry]", Editorial Reverte, Barcelona, Espana (in Spanish).
115 Stankic, S., Suman, S., Haque, F. and Vidic, J. (2016), "Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties", J. Nanobiotechnol., 14, 73. https://doi.org/10.1186/s12951-016-0225-6.   DOI
116 Sulaiman, G.M., Tawfeeq, A.T. and Naji, A.S. (2018), "Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines", Artif. Cells, Nanomed. Biotechnol., 46(6), 1215-1229. https://doi.org/10.1080/21691401.2017.1366335.   DOI
117 Tansey, M.R. and Appleton, J.A. (1975), "Inhibition of fungal growth by garlic extract", Mycologia, 67, 409-413.   DOI
118 Beckman, E.J. (2003), "Oxidation reactions in CO2: Academic exercise or future green processes?", Environ. Sci. Technol., 37, 5289-5296. https://doi.org/10.1021/es034540i.   DOI
119 Bowman, S.M. and Free, S.J. (2006), "The structure and synthesis of the fungal cell wall", Bioessays, 28(8), 799-808. https://doi.org/10.1002/bies.20441.   DOI
120 Bozzola, J.J. and Russell, L.D. (1999), Electron Microscopy: Principles and Techniques for Biologists, Jones and Bartlett, Toronto, Canada.
121 Ambika, S. and Sundrarajan, M. (2015), "Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria", J. Photochem. Photobiol. B Biol., 146, 52-57. https://doi.org/10.1016/j.jphotobiol.2015.02.020.   DOI
122 Anbuvannan, M., Ramesh, M., Viruthagiri, G., Shanmugam, N. and Kannadasan, N. (2015), "Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities", Mater. Sci. Semicond. Process, 39, 621-628. https://doi.org/10.1016/j.mssp.2015.06.005.   DOI
123 Arakha, M., Saleem, M., Mallick, B.C. and Jha, S. (2015), "The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle", Sci. Rep., 5, 9578. https://doi.org/10.1038/srep09578.   DOI
124 Hussain, I., Singh, N.B., Singh, A., Singh, H. and Singh, S.C. (2016), "Green synthesis of nanoparticles and its potential application", Biotechnol. Lett., 38, 545-560. https://doi.org/10.1007/s10529-015-2026-7.   DOI
125 Morkoc, H. and Ozgur, U. (2008), Zinc Oxide: Fundamentals, Materials and Device Technology, Wiley, Weinheim, Germany.
126 Motulsky, H. (2007), "In GraphPad prism 5: Statistics Guide, GraphPad software inc", Press San Diego, California, USA.
127 Mu, Q., Jiang, G., Chen, L., Zhou, H., Fourches, D., Tropsha, A. and Yan, B. (2014), "Chemical basis of interactions between engineered nanoparticles and biological systems", Chem. Rev., 114, 7740-7781. https://doi.org/10.1021/cr400295a.   DOI
128 He, L., Liu, Y., Mustapha, A. and Lin, M. (2011), "Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum", Microbiol. Res., 166, 207-215. https://doi.org/10.1016/j.micres.2010.03.003.   DOI
129 Heiligtag, F.J. and Niederberger, M. (2013), "The fascinating world of nanoparticle research", Mater. Today, 16, 262-271. https://doi.org/10.1016/j.mattod.2013.07.004.   DOI
130 Jafarirad, S., Mehrabi, M., Divband, B. and Kosari-Nasab, M. (2016), "Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach", Mater. Sci. Eng. C, 59, 296-302. https://doi.org/10.1016/j.msec.2015.09.089.   DOI