DOI QR코드

DOI QR Code

Biocontrol Potential of Fungal Endophytes against Fusarium oxysporum f. sp. cucumerinum Causing Wilt in Cucumber

  • Abro, Manzoor Ali (Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University Tandojam) ;
  • Sun, Xiang (State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences No. 1) ;
  • Li, Xingchun (State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences No. 1) ;
  • Jatoi, Ghulam Hussain (Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University Tandojam) ;
  • Guo, Liang-Dong (State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences No. 1)
  • Received : 2019.05.01
  • Accepted : 2019.08.22
  • Published : 2019.12.01

Abstract

Endophytic fungi have received much attention as plant growth promoters as well as biological control agents against many plant pathogens. In this study, 30 endophytic fungal species, isolated from various plants in China, were evaluated using in vitro dual culture assay against Fusarium oxysporum f. sp. cucumerinum, causing wilt in cucumber. The results of the present study clearly showed that all the 30 endophytic fungal isolates were highly capable of inhibiting the mycelial colony growth of Fusarium oxysporum f. sp. cucumerinum with inhibition % over 66% as compared to control treatments. Among all of them, 5 isolates were highly effective such as, Penicillium sp., Guignardia mangiferae, Hypocrea sp., Neurospora sp., Eupenicillium javanicum, and Lasiodiplodia theobromae, respectively. The Penicillium sp. and Hypocrea sp. were highly effective as compared to other isolates. From in vitro results 10 best isolates were selected for greenhouse studies. The results of the greenhouse studies showed that among all of them 3 endophytic fungal isolates successfully suppressed wilt severity when co-inoculation with pathogen Fusarium. oxysporum f. sp. cucumerinum. The endophytic fungi also enhanced plant growth parameters of the host plants, the antagonistic fungal isolates increased over all plant height, aerial fresh, and dry weight as compared to control.

Keywords

References

  1. Alabouvette, C., Lemanceau, P. and Steinberg, C. 1993. Recent advances in the biological-control of Fusarium wilts. Pestic. Sci. 37:365-373. https://doi.org/10.1002/ps.2780370409
  2. Anith, K. N., Sreekumar, A. and Sreekumar, J. 2015. The growth of tomato seedlings inoculated with co-cultivated Piriformospora indica and Bacillus pumilus. Symbiosis 65:9-16. https://doi.org/10.1007/s13199-015-0313-7
  3. Arnold, A. E., Maynard, Z. and Gilbert, G. S. 2001. Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol. Res. 105:1502-1507. https://doi.org/10.1017/S0953756201004956
  4. Aydi Ben Abdallah, R., Mokni-Tlili, S., Nefzi, A., Jabnoun-Khiareddine, H. and Daami-Remadi, M. 2016. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol. Control 97:80-88. https://doi.org/10.1016/j.biocontrol.2016.03.005
  5. Backman, P. A. and Sikora, R. A. 2008. Endophytes: An emerging tool for biological control. Biol. Control 46:1-3. https://doi.org/10.1016/j.biocontrol.2008.03.009
  6. Bae, S.-J., Mohanta, T. K., Chung, J. Y., Ryu, M., Park, G., Shim, S., Hong, S.-B., Seo, H., Bae, D.-W., Bae, I., Kim, J.-J. and Bae, H. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol. Control 92:128-138. https://doi.org/10.1016/j.biocontrol.2015.10.005
  7. Barretti, P. B., Romeiro, R. S., Mizubuti, E. S. G. and de Souza, J. T. 2009. Screening of endophytic bacteria isolated from tomato plants as potencial biocontrol agents and growth promotion. Cienc. Agrotec. 33 Suppl:2038-2044 (in Portuguese). https://doi.org/10.1590/S1413-70542009000700057
  8. Costa, F. G., Zucchi, T. D. and de Melo, I. S. 2013. Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.). Braz. Arch. Biol. Technol. 56:948-955. https://doi.org/10.1590/S1516-89132013000600009
  9. Crozier, J., Arroyo, C., Morales, H., Melnick, R. L., Strem, M. D., Vinyard, B. T., Collins, R., Holmes, K. A. and Bailey, B. A. 2015. The influence of formulation on Trichoderma biological activity and frosty pod rot management in Theobroma cacao. Plant Pathol. 64:1385-1395. https://doi.org/10.1111/ppa.12383
  10. Debbab, A., Aly, A. H. and Proksch, P. 2013. Mangrove derived fungal endophytes: a chemical and biological perception. Fungal Divers. 61:1-27. https://doi.org/10.1007/s13225-013-0243-8
  11. Eksteen, D., Pretorius, J. C., Nieuwoudt, T. D. and Zietsman, P. C. 2001. Mycelial growth inhibition of plant pathogenic fungi by extracts of South African plant species. Ann. Appl. Biol. 139:243-249. https://doi.org/10.1111/j.1744-7348.2001.tb00400.x
  12. El Komy, M. H., Saleh, A. A., Ibrahim, Y. E., Hamad, Y. K. and Molan, Y. Y. 2016. Trichoderma asperellum strains confer tomato protection and induce its defense-related genes against the Fusarium wilt pathogen. Trop. Plant Pathol. 41:277-287. https://doi.org/10.1007/s40858-016-0098-0
  13. Fan, A. M. and Jackson, R. J. 1989. Pesticides and food safety. Regul. Toxicol. Pharmacol. 9:158-174. https://doi.org/10.1016/0273-2300(89)90033-0
  14. Gava, C. A. T. and Pinto, J. M. 2016. Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp melonis using seed treatment with Trichoderma spp. and liquid compost. Biol. Control 97:13-20. https://doi.org/10.1016/j.biocontrol.2016.02.010
  15. Guo, L. D., Hyde, K. D. and Liew, E. C. Y. 2000. Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol. 147:617-630. https://doi.org/10.1046/j.1469-8137.2000.00716.x
  16. Hanada, R. E., Pomella, A. W. V., Costa, H. S., Bezerra, J. L., Loguercio, L. L. and Pereira, J. O. 2010. Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuacu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biol. 114:901-910. https://doi.org/10.1016/j.funbio.2010.08.006
  17. Hong, P.-X., Qiu, S.-X., Chen, H., Zhao, X.-D. and Hu, F.-P. 2007. Isolation and screening of endophytic antagonistic bacteria from four species of Solanaceae. J. Fujian Agric. For. Univ. 36:347-351 (in Chinese). https://doi.org/10.3969/j.issn.1671-5470.2007.04.003
  18. Kaul, S., Gupta, S., Ahmed, M. and Dhar, M. K. 2012. Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem. Rev. 11:487-505. https://doi.org/10.1007/s11101-012-9260-6
  19. Kim, H.-Y., Choi, G. J., Lee, H. B., Lee, S. W., Lim, H. K., Jang, K. S., Son, S. W., Lee, S. O., Cho, K. Y., Sung, N. D. and Kim, J.-C. 2007. Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett. Appl. Microbiol. 44:332-337. https://doi.org/10.1111/j.1472-765X.2006.02093.x
  20. Kim, J.-C., Choi, G. J., Park, J.-H., Kim, H. T. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag. Sci. 57:554-559. https://doi.org/10.1002/ps.318
  21. Lim, G. T. T., Wang, G.-P., Hemming, M. N., Basuki, S., Mc-Grath, D. J., Carroll, B. J. and Jones, D. A. 2006. Mapping the I-3 gene for resistance to Fusarium wilt in tomato: application of an I-3 marker in tomato improvement and progress towards the cloning of I-3. Australas. Plant Pathol. 35:671-680. https://doi.org/10.1071/AP06073
  22. Lu, D., Ma, Z., Xu, X. and Yu, X. 2016. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum. J. Basic Microbiol. 56:929-933. https://doi.org/10.1002/jobm.201500666
  23. Lugtenberg, B. J., Caradus, J. R. and Johnson, L. J. 2016. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 92:fiw194. https://doi.org/10.1093/femsec/fiw194
  24. Martinez, R., Aguilar, M. I., Guirado, M. L., Alvarez, A. and Gomez, J. 2003. First report of fusarium wilt of cucumber caused by Fusarium oxysporum in Spain. Plant Pathol. 52:410. https://doi.org/10.1046/j.1365-3059.2003.00832.x
  25. McGovern, R. J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 73:78-92. https://doi.org/10.1016/j.cropro.2015.02.021
  26. Medina-Cordova, N., Lopez-Aguilar, R., Ascencio, F., Castellanos, T., Campa-Cordova, A. I. and Angulo, C. 2016. Biocontrol activity of the marine yeast Debaryomyces hansenii against phytopathogenic fungi and its ability to inhibit mycotoxins production in maize grain (Zea mays L.). Biol. Control 97:70-79. https://doi.org/10.1016/j.biocontrol.2016.03.006
  27. Mei, C. and Flinn, B. S. 2010. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat. Biotechnol. 4:81-95. https://doi.org/10.2174/187220810790069523
  28. Mejia, L. C., Rojas, E. I., Maynard, Z., van Bael, S., Arnold, A. E., Hebbar, P., Samuels, G. J., Robbins, N. and Herre, E. A. 2008. Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol. Control 46:4-14. https://doi.org/10.1016/j.biocontrol.2008.01.012
  29. Miles, L. A., Lopera, C. A., Gonzalez, S., de Garcia, M. C. C., Franco, A. E. and Restrepo, S. 2012. Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. BioControl 57:697-710. https://doi.org/10.1007/s10526-012-9442-6
  30. Norman, C. 1988. EPA sets new policy on pesticide cancer risks. Science 242:366-367. https://doi.org/10.1126/science.3175656
  31. Ownley, B. H., Gwinn, K. D. and Vega, F. E. 2010. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55:113-128. https://doi.org/10.1007/s10526-009-9241-x
  32. Patel, H. A., Patel, R. K., Khristi, S. M., Parikh, K. and Rajendran, G. 2012. Isolation and characterization of bacterial endophytes from Lycopersicon esculentum plant and their plant growth promoting characteristics. Nepal J. Biotechnol. 2:37-52.
  33. Paulitz, T. C., Park, C. S. and Baker, R. 1987. Biological control of Fusarium wilt of cucumber with nonpathogenic isolates of Fusarium oxysporum. Can. J. Microbiol. 33:349-353. https://doi.org/10.1139/m87-061
  34. Posada, F. and Vega, F. E. 2006. Inoculation and colonization of coffee seedlings (Coffea arabica L.) with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycoscience 47:284-289. https://doi.org/10.1007/S10267-006-0308-6
  35. Prabhukarthikeyan, R., Saravanakumar, D. and Raguchander, T. 2014. Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato. Pest Manag. Sci. 70:1742-1750. https://doi.org/10.1002/ps.3719
  36. Premalatha, K. and Kalra, A. 2013. Molecular phylogenetic identification of endophytic fungi isolated from resinous and healthy wood of Aquilaria malaccensis, a red listed and highly exploited medicinal tree. Fungal Ecol. 6:205-211. https://doi.org/10.1016/j.funeco.2013.01.005
  37. Radic, N. and Strukelj, B. 2012. Endophytic fungi: the treasure chest of antibacterial substances. Phytomedicine 19:1270-1284. https://doi.org/10.1016/j.phymed.2012.09.007
  38. Rai, M., Rathod, D., Agarkar, G., Dar, M., Brestic, M., Pastore, G. M. and Marostica, M. R. Jr. 2014. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis 62:63-79. https://doi.org/10.1007/s13199-014-0273-3
  39. Rania, A. B. A., Jabnoun-Khiareddine, H., Nefzi, A., Mokni-Tlili, S. and Daami-Remadi, M. 2016. Endophytic bacteria from Datura metel for plant growth promotion and bioprotection against Fusarium wilt in tomato. Biocontrol Sci. Technol. 26:1139-1165. https://doi.org/10.1080/09583157.2016.1188264
  40. Raza, W., Ling, N., Zhang, R., Huang, Q., Xu, Y. and Shen, Q. 2017. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Crit. Rev. Biotechnol. 37:202-212. https://doi.org/10.3109/07388551.2015.1130683
  41. Reis, A., Costa, H., Boiteux, L. S. and Lopes, C. A. 2005. First report of Fusarium oxysporum f. sp. lycopersici Race 3 on tomato in Brazil. Fitopatol. Bras. 30:426-428. https://doi.org/10.1590/S0100-41582005000400017
  42. Saravanakumar, K., Yu, C., Dou, K., Wang, M., Li, Y. and Chen, J. 2016. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol. Control 94:37-46. https://doi.org/10.1016/j.biocontrol.2015.12.001
  43. Singh, P. P., Shin, Y. C., Park, C. S. and Chung, Y. R. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92-99. https://doi.org/10.1094/PHYTO.1999.89.1.92
  44. Strobel, G. A. 2003. Endophytes as sources of bioactive products. Microbes Infect. 5:535-544. https://doi.org/10.1016/S1286-4579(03)00073-X
  45. Vethavalli, S. and Sudha, S. S. 2012. In vitro and in silico studies on biocontrol agent of bacterial strains against Fusarium oxysporum f. sp. lycopersici. Res. Biotechnol. 3:22-31.
  46. Vos, C. M., Yang, Y., De Coninck, B. and Cammue, B. P. A. 2014. Fungal (-like) biocontrol organisms in tomato disease control. Biol. Control 74:65-81. https://doi.org/10.1016/j.biocontrol.2014.04.004
  47. Wang, S., Liang, Y., Shen, T., Yang, H. and Shen, B. 2016. Biological characteristics of Streptomyces albospinus CT205 and its biocontrol potential against cucumber Fusarium wilt. Biocontrol Sci. Technol. 26:951-963. https://doi.org/10.1080/09583157.2016.1172203
  48. Wiyakrutta, S., Sriubolmas, N., Panphut, W., Thongon, N., Danwisetkanjana, K., Ruangrungsi, N. and Meevootisom, V. 2004. Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J. Microbiol. Biotechnol. 20:265-272. https://doi.org/10.1023/B:WIBI.0000023832.27679.a8
  49. Worapong, J. and Strobel, G. A. 2009. Biocontrol of a root rot of kale by Muscodor albus strain MFC2. BioControl 54:301-306. https://doi.org/10.1007/s10526-008-9175-8
  50. Wu, L., Shang, H., Wang, Q., Gu, H., Liu, G. and Yang, S. 2016. Isolation and characterization of antagonistic endophytes from Dendrobium candidum Wall ex Lindl., and the biofertilizing potential of a novel Pseudomonas saponiphila strain. Appl. Soil Ecol. 105:101-108. https://doi.org/10.1016/j.apsoil.2016.04.008
  51. Xiang, L., Gong, S., Yang, L., Hao, J., Xue, M., Zeng, F., Zhang, X., Shi, W., Wang, H. and Yu, D. 2016. Biocontrol potential of endophytic fungi in medicinal plants from Wuhan Botanical Garden in China. Biol. Control 94:47-55. https://doi.org/10.1016/j.biocontrol.2015.12.002
  52. Youssef, S. A., Tartoura, K. A. and Abdelraouf, G. A. 2016. Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROSscavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biol. Control 100:79-86. https://doi.org/10.1016/j.biocontrol.2016.06.001
  53. Zeilinger, S., Gupta, V. K., Dahms, T. E. S., Silva, R. N., Singh, H. B., Upadhyay, R. S., Gomes, E. V., Tsui, C. K.-M. and Nayak, S. C. 2016. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol. Rev. 40:182-207. https://doi.org/10.1093/femsre/fuv045
  54. Zhang, Q., Zhang, J., Yang, L., Zhang, L., Jiang, D., Chen, W. and Li, G. 2014. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol. Control 72:98-108. https://doi.org/10.1016/j.biocontrol.2014.02.018