Browse > Article
http://dx.doi.org/10.4014/jmb.1906.06070

Biocidal Activity of Metal Nanoparticles Synthesized by Fusarium solani against Multidrug-Resistant Bacteria and Mycotoxigenic Fungi  

Sayed, Manal T. El (Botany and Microbiology Department, Faculty of Science, Zagazig University)
El-Sayed, Ashraf S.A. (Botany and Microbiology Department, Faculty of Science, Zagazig University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.2, 2020 , pp. 226-236 More about this Journal
Abstract
Antibiotic resistance by pathogenic bacteria and fungi is one of the most serious global public health problems in the 21st century, directly affecting human health and lifestyle. Pseudomonas aeruginosa and Staphylococcus aureus with strong resistance to the common antibiotics have been isolated from Intensive Care Unit patients at Zagazig Hospital. Thus, in this study we assessed the biocidal activity of nanoparticles of silver, copper and zinc synthesized by Fusarium solani KJ 623702 against these multidrug resistant-bacteria. The synthesized Metal Nano-particles (MNPs) were characterized by UV-Vis spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Zeta potential. The Fourier transform infrared spectroscopy (FTIR) result showed the presence of different functional groups such as carboxyl, amino and thiol, ester and peptide bonds in addition to glycosidic bonds that might stabilize the dispersity of MNPs from aggregation. The antimicrobial potential of MNPs by F. solani against the multidrug-resistant (MDR) P. aeruginosa and S. aureus in addition to the mycotoxigenic Aspergillus awamori, A. fumigatus and F. oxysporum was investigated, based on the visual growth by diameter of inhibition zone. Among the synthesized MNPs, the spherical AgNPs (13.70 nm) displayed significant effect against P. aeruginosa (Zone of Inhibition 22.4 mm and Minimum Inhibitory Concentration 21.33 ㎍/ml), while ZINC oxide Nano-Particles were the most effective against F. oxysporum (ZOI, 18.5 mm and MIC 24.7 ㎍/ml). Transmission Electron Microscope micrographs of AgNP-treated P. aeruginosa showed cracks and pits in the cell wall, with internalization of NPs. Production of pyocyanin pigment was significantly inhibited by AgNPs in a concentration-dependent manner, and at 5-20 ㎍ of AgNPs/ml, the pigment production was reduced by about 15-100%, respectively.
Keywords
Antimicrobial activity; characterization; Fusarium solani; nanoparticles; Pseudomonas aeruginosa; pyocyanin;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ahmad T , Wani IA, Manzoor N , Ahmed J, Asiri AM. 2013. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf. B Biointerfaces 107: 227-234.   DOI
2 Padmavathy N, Vijayaraphavan. 2008. Enhanced bioactivity of ZnO nanoparticles an antimicrobial study. Sci. Technol. Adv. Mater. 9: 035004.   DOI
3 Lipovsky A, Nitzan Y, Gedanken A, Lubart R. 2011. Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 22: 105101-105105.   DOI
4 Otari SV, Pawar SH, Patel SKS, Sing RK, Kim SY, Lee JH, et al. 2017. Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: characterization, antimicrobial activity, and toxicity studies. J. Microbiol. Biotechnol. 27: 731-738.   DOI
5 Khan A, Malik N, Khan M, Cho MH, Khan M. 2018. Fungiassisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst. Eng. 41: 1-20.   DOI
6 Kumar N, Das S, Jyoti A, Kaushik S. 2016. Synergistic effect of silver nanoparticles with doxycycline against Klebsiella pneumonia. Int. J. Pharm. Sci. 8: 183-186.
7 Shaalan MI, El-Mahdy MM, Theiner S, El-Matbouli M, Saleh M. 2017. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet. Scand. 59(1): 49.   DOI
8 Lipovsky A, Nitzan Y, Gedanken A, Lubar R. 2011. Antifungal activity of ZnO nanoparticles- the role of ROS mediated cell injury. Nanotechnol. 11: 105101.
9 El-Sayed ASA, Ali GS. 2020. Aspergillus flavipes is a novel efficient biocontrol agent of Phytophthora parasiticus. Biological Control 140: 104072.   DOI
10 Ottoni CA, Simaes MF, Fernandes S, Santos JG, da Silva ES, Souza RFB, et al. 2017. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7: 31.   DOI
11 Pan X, Medina-Ramirez I., Mernaugh R, Liu J. 2010. Nano characterization and bactericidal performance of silver modified titania photocatalyst. Colloids Surf. B Biointerfaces 77: 82-89.   DOI
12 Chhipa H 2019. Chapter 5 - Mycosynthesis of nanoparticles for smart agricultural practice. pp. 87-109. A green and ecofriendly approach. Micro and Nano Technologies.
13 El-Sayed MT. 2014. The response of Fusarium solani to Cd(II) and Cu(II) in pure culture. Egypt J. Microbiol. 5: 99-117.
14 Otari SV, patel SKS, Kalia VC, Kim IW, Lee JK. 2019. Antimicrobial activity of Biosynthesized silver nanoparticles decorated silica nanoparticles. Indian J. Microbiol. 59: 379-382.   DOI
15 Bergey DH, Holt JG. Bergey's Manual of Determinative Bacteriology, 9th ed., 1994.
16 Smibert RM. Krieg NR. 1994. Phenotypic Characterization. Methods for General and Molecular Bacteriology, pp. 607-654. American Society for Microbiology, Washington DC.
17 Kalia VC, Patel SKS, Kang YC, Lee JK. 2019. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol. Adv. 37: 68-90.   DOI
18 Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 45: 493-496.   DOI
19 Singh BR, Singh B N , Singh A, Khan W, N aqvi H, Singh H. 2015. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci. Rep. 5: 1-14.
20 Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins A. et al. 2016. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 8: 236-249.   DOI
21 Khalil NM, Abd El-Ghany MN, Rodriguez-Couto S. 2019. Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere 477: e486.
22 Graham P, Lin S, Larson E. 2006. Population-based survey of Staphylococcus aureus colonization. Ann. Intern. Med. 144: 318-325.   DOI
23 Krishnan T, Yin W, Chan K. 2012. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract. Sensors (Basel) 12: 4016-4030.   DOI
24 Essar DW, Eberly L, Hadero A, Crawford IP. 1990. Identification and characterization of genes for a second anthranilate synthase in pseudomonad aeruginosa: interchangeability of the two anthranilate synthase and evolutionary implications. J. Bacteriol. 172: 884-900.   DOI
25 Daniel WW. 1999. Biostatistics: A Foundation for Analysis in the Health Sciences. 7th. ed., John Wiley & Sons, New York.
26 Adur AJ, Nandini N, Mayachar K, Ramya R, Srinatha N. 2018. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry. J. Photochem. Photobiol. B 183: 30-34.   DOI
27 Yin W, Keller NP. 2011. Transcriptional regulatory elements in fungal secondary metabolism. J. Microbiol. 49: 329-339.   DOI
28 Cuevas R, Duran N, Diez MC, Tortella GR, Rubilar O. 2015. Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean forests. J. Nanomater. 2015: 1-7.
29 Gopinath P, Marconi G, Dhanasekaran D, Ranjani A, Thajuddin N. 2015. Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrugresistant (MDR) bacterial pathogens of female infertility cases. Asian J. Pharm. Sci. 10: 138-145.   DOI
30 Shende S, Gade A, Rai M. 2016. Large-scale synthesis and antibacterial activity of fungal-derived silver nanoparticles. Environ. Chem. Lett. 15: 427-434.   DOI
31 Kumari M, Pandey S, Giri VP, Bhattacharya A., Shukla R, Mishra A, et al. 2017. Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb. Pathog. 105: 346-355.   DOI
32 Kamalakannan S, Gobinath C, Ananth S. 2014. Synthesis and characterization of fungus mediated silver nanoparticle for toxicity on filarial vector, Culex quinquefasciatus. Int. J. Pharm. Sci. Rev. Res. 24: 124-132.
33 Annamalai J, Nallamuthu T. 2016. Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. J. Appl. Nanosci. 6: 259-265.   DOI
34 Priyadarshini S, Gopinath V, Meera Priyadharsshini N, Mubarak Ali D, Velusamy P, 2013. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloid Surf. B Biointerfaces 102: 232-237.   DOI
35 Wen L, Zeng P, Zhang L, Huang W, Wang H, Chen G. 2016. Symbiosis theory-directed green synthesis of silver nanoparticles and their application in infected wound healing, Int. J. Nanomedicine 11: 2757-2767.   DOI
36 Ghaseminezhad MS, Hamedi S, Abbas, S. 2012. Green synthesis of silver nanoparticles by a novel method: Comparative study of their properties. Carbohydr. Polym. 89: 467-472.   DOI
37 El-Sayed ASA, Rabie GH, El-Gazzar NS, Ali GS. 2017. Immobilization and characterization of purified Aspergillus flavus peroxidase mediated silver nanoparticle synthesis: peroxidase surface reactive residues are implemented for reduction of silver ions, more than its active sites. J. Nanomedicine Nanotechnol. 8: 1-10.
38 Siddiqi KS, Husen A, Rao RAK. 2018. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology 16(1): 14.   DOI
39 Fatema S, Shirsat M, Farooqui M, Pathan MA. 2019. Biosynthesis of silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. Int. J. Nano Dimension 10: 163-168.
40 Alsaleh NB, Persaud I, Brown JM. 2016. Silver nanoparticledirected mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PLoS One 11: e0167366.   DOI
41 Monowar T, Rahman MS, Bhore S, Raju G, Sathasivam K. 2018. Silver nanoparticles synthesized by using the endophytic bacterium Pantoea ananatis are promising antimicrobial agents against multidrug resistant bacteria. Molecules 23(12). pii: E3220.
42 Bogdanovic U, Lazic V, Vodnik V, Budimir M, Markovic Z, Dimitrijevic S. 2014. Copper nanoparticles with high antimicrobial activity. Mater. Lett. 128: 75-78.   DOI
43 Al-Dahash, G, Mubdir KW, Abdul V. 2018. Preparation and characterization of ZnO nanoparticles by Laser Ablation in NaOH aqueous solution. Iran. J. Chem. Chem. Eng. 37: 11-16.
44 Prasher P, Singh M, Mudila H. 2018. Oligodynamic effect of silver nanoparticles: a review. Bio Nano Sci. 8: 951-962
45 Aparna TK, Sivasubramanian R. 2018. A Facile hydrothermal synthesis of three dimensional flower-like NiO-thermally reduced graphene oxide (trGO) nanocomposite for selective determination of dopamine in presence of uric acid and ascorbic acid. J. Nanosci. Nanotechnol. 18: 789-797.   DOI
46 Thodeti S, Reddy S, Vemula S. 2018. Synthesis and characterization of copper nanoparticles by chemical reduction method. Res. J. Sci. Tech. 10: 52-57.   DOI
47 Yadav R, Bandyopadhyay M, Saha A, Mandar A. 2015. Synthesis, characterization, antibacterial and cytotoxic assays of zinc oxide (ZnO) nanoparticles. Br. Biotechnol. J. 9: 1-10.
48 Bos J, Austin RH 2018. A bacterial antibiotic resistance accelerator and applications. pp. 41-57. In Methods in Cell Biology; Elsevier: NY, USA, 147. ISBN 978-0-12-814282-0.
49 Rai M., Ingle AP, Pandit R, Paralikar P, Gupta I, Chaud MV, et al. 2017. Broadening the spectrum of small-molecule antibacterial by metallic nanoparticles to overcome microbial resistance. Int. J. Pharm. 532: 139-148.   DOI
50 El-Sayed ASA, Ali DMI. 2018. Biosynthesis and comparative bactericidal activity of silver nanoparticles synthesized by Aspergillus flavus and Penicillium crustosum against the multidrug-resistant bacteria. J. Microbiol. Biotechnol. 28: 1-11.   DOI
51 Shaoping Nie, Mingyong Xie, Zhihong Fu, Yiqun Wan, Aiping Yan. 2008. Study on the purification and chemical compositions of tea glycoprotein. Carbohydr. Polym. 71: 626-633.   DOI
52 El-Sayed ASA, Hassan AEA, Shindia AA, Mohamed SG, Sitohy MZ. 2016. Aspergillus flavipes L-methionine $\gamma$-lyase dextran conjugates with enhanced structural proteolytic stability and anticancer efficiency. J. Molecular Catalysis: Benzymatic. 133: S15-S24.   DOI
53 Otari SV, P atil RM, Ghosh S J, Thorat ND, P awar SH. 2015. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136: 1175-1180.   DOI
54 Praphakar RA, Jeyaraj M, Ahmed M, Kumar SS, Rajan M. 2018. Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery. Int. J. Biol. Macromol. 118: 1627-1638.   DOI
55 Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5: 382-386.   DOI
56 Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, et al. 2010. A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr. Nanosci. 6: 376-380.   DOI
57 Priya AM, Selvan RK, Senthilkumar B, Satheeshkumar MK, Sanjeeviraja C. 2011. Synthesis and characterization of $CdWO_4$ nanocrystals. Ceramics Intern. 37: 2485-2488.   DOI
58 Mirzapou A. 2019. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol. 124: 148-15415.   DOI
59 Basak S, Singh P, and I Rajurkar M. 2016. Multidrug resistant and extensively drug resistant bacteria: a study. J. Pathog. 2016: 4065603.   DOI
60 Qiao M, Ying GG, Singer AC, Zhu YG. 2018. Review of antibiotic resistance in China and its environment. Environ. Int. 110: 160-172.   DOI
61 Ahmad F, Ashraf N, Ashraf T, Zhou R,Da-Chuan Yin D. 2019. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl. Microbiol. Biotechnol. 103: 2913-2935.   DOI
62 Ovais M , Khalil A T, I slam N U, Ahmad I , Ayaz M , Saravanan M, et. al. 2018. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol. 102: 6799-6814.   DOI
63 Vetchinkina E, Loshchinina E, Kupryashina M, Burov A, Pylaev T, Nikitina V. 2018. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. PeerJ. 6: e5237.   DOI
64 Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA. 2015. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 29: 221-236.   DOI
65 Ali J, Ali NLH, Pan G. 2019. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods 159: 18-25.   DOI
66 Wanarska E, Maliszewsk I. 2019. The possible mechanism of the formation of silver nanoparticles by Penicillium cyclopium. Bioor. Chem. 93: 102803.   DOI
67 Mohanpuria P. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanoparticle Res. 10: 507-517.   DOI
68 Siddiqui KS, Husen A. 2016. Fabrication of metal nanoparticles from fungi and metal salts: scope and application-Nano Review. Nanoscale Res. Lett. 11: 98-112.   DOI
69 Al GS, El-Sayed AS, Patel JS, Green KB, Ali M, Brennan M, Norman D. 2016. Ex vivo application of secreted metabolites produced by soil-inhabiting Bacillus spp efficiently controls foliar diseases caused by Alternaria spp. Appl. Environ. Microbiol. 2: 478-490.
70 Tacconell D. 2008. Methicillin?resistant Staphylococcus aureus: risk assessment and infection control policies. Clin. Microbiol. Infect. 5: 407-410.   DOI
71 Das B, Dash SK, Mandal D, Adhikary J, Chattopadhyay S, Tripathy S, et al. 2016. Green-synthesized silver nanoparticles kill virulent multidrug-resistant Pseudomonas aeruginosa strains: a mechanistic study. BLDE Univ. J. Health Sci. 1: 89-101.   DOI
72 Salomoni R, Leo P, Montemor AF, Rinaldi BG, Rodrigues MFA. 2017. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 10: 115-121.   DOI
73 Yuan YG, Peng QL, Gurunathan S. 2017. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int. J. Mol. Sci. 6: 18.   DOI
74 Yan X, He B, Liu L, Qu G, Shi J, Hu L, et al. 2018. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics. 10: 557-564.   DOI