Browse > Article
http://dx.doi.org/10.5423/RPD.2017.23.2.177

Correlation between Biosurfactants and Antifungal Activity of a Biocontrol Bacterium, Bacillus amyloliquefaciens LM11  

Kang, Beom Ryong (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kim, Yong Hwan (College of Life and Resource Science, Dankook University)
Nam, Hyo Song (Bio Control Research Center, Jeonnam Bioindustry Foundation)
Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Publication Information
Research in Plant Disease / v.23, no.2, 2017 , pp. 177-185 More about this Journal
Abstract
Bacillus amyloliquefaciens LM11 was isolated from the feces of larvae of the rhino beetle and showed strong antifungal activities against various phytopathogenic fungi by producing biosurfactants. In this study, our overall goal was to determine relationship between biosurfactants produced from the LM11 strain and its role in growth inhibition of phytopathogenic fungi. Production and expression levels of B. amyloliquefaciens LM11 biosurfactants were significantly differed depending on growth phases. Transcriptional and biochemical analysis indicated that the biosurfactants of the LM11 strain were greatly enhanced in late log-phase to stationary phase. Inhibitions of phytopathogenic mycelial growth and spore germination were directly correlated (P<0.001, R=0.761) with concentrations of the LM11 cell-free culture filtrates. The minimum inhibitory surface tension of the culture filtrate of the B. amyloliquefaciens LM11 grown in stationary phase to inhibit mycelial growth of the phytopathogenic fungi was 38.5 mN/m (P<0.001, R=0.951-0.977). Our results indicated that the biosurfactants of B. amyloliquefaciens LM11 act as key antifungal metabolites in biocontrol of plant diseases, and measuring surface tension of the cell-free culture fluids can be used as an easy indicator for optimal usage of the biocontrol agents.
Keywords
Antifungal activity; Bacillus amyloliquefaciens; Biosurfactants; Growth phases; Surface tension;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lee, S. C., Jung, Y. J., Yoo, J. S., Cho, Y. S., Cha, I. H. and Choi, Y. L. 2002. Characteristics of biosurfactants produced by Bacillus sp. LSC11. Korean J. Life Sci. 12: 745-751.   DOI
2 Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D., Epton, H. A. and Harbour, A. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J. Appl. Bacteriol. 78: 97-108.   DOI
3 Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408.   DOI
4 Marahiel, M. A., Nakano, M. M. and Zuber, P. 1993. Regulation of peptide antibiotic production in Bacillus. Mol. Microbiol. 7: 631-636.   DOI
5 Mnif, I., Grau-Campistany, A., Coronel-León, J., Hammami, I., Triki, M. A., Manresa, A. and Ghribi, D. 2016. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ. Sci. Pollut. Res. Int. 23: 6690-6699.   DOI
6 Mnif, I., Hammami, I., Triki, M. A., Azabou, M. C., Ellouze-Chaabouni, S. and Ghribi, D. 2015. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Environ. Sci. Pollut. Res. Int. 22: 18137-18147.   DOI
7 Mochizuki, M., Yamamoto, S., Aoki, Y. and Suzuki, S. 2012. Isolation and characterisation of Bacillus amyloliquefaciens S13-3 as a biological control agent for anthracnose caused by Colletotrichum gloeosporioides. Biocontrol Sci. Technol. 22: 697-709.   DOI
8 Montesinos, E. 2007. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett. 270: 1-11.   DOI
9 Mota, M. S., Gomes, C. B., Souza Júnior, I. T. and Moura, A. B. 2017. Bacterial selection for biological control of plant disease: criterion determination and validation. Braz. J. Microbiol. 48: 62-70.   DOI
10 Mulligan, C. N., Mahmourides, G. and Gibbs, B. F. 1989. The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J. Biotechnol. 12: 199-209.   DOI
11 Nam, H. S., Yang, H. J., Oh, B. J., Anderson, A. J. and Kim, Y. C. 2016. Biological control potential of Bacillus amyloliquefaciens KB3 isolated from the feces of Allomyrina dichotoma larvae. Plant Pathol. J. 32: 273-280.   DOI
12 Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.   DOI
13 Rahman, A., Uddin, W. and Wenner, N. G. 2015. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi‐purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol. Plant Pathol. 16: 546-558.   DOI
14 Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.   DOI
15 Park, K., Dutta, S., Park, Y. S., Sang, M. K. and Moon, S. S. 2016. Induction of systemic resistance and tolerance against biotic and abiotic stress in chinese cabbage by cyclic peptides producing Bacillus vallismortis strain BS07M. In: Recent Trends in PGPR Research for Sustainable Crop Productivity, eds. by R. Z. Sayyed, M. S. Reddy and A. Al-Turki, pp. 200-205. Scientific Publishers, New Delhi, India.
16 Peypoux, F., Bonmatin, J. M. and Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51: 553-563.   DOI
17 Sieber, S. A. and Marahiel, M. A. 2003. Learning from nature's drug factories: nonribosomal synthesis of macrocyclic peptides. J. Bacteriol. 185: 7036-7043.   DOI
18 Razafindralambo, H., Paquot, M., Hbid, C., Jacques, P., Destain, J. and Thonart, P. 1993. Purification of antifungal lipopeptides by reversed-phase high-performance liquid chromatography. J. Chromatogr. 639: 81-85.   DOI
19 Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20: 430-440.   DOI
20 Rozen, S. and Skaletsky, H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386.
21 Singh, A. K., Rautela, R. and Cameotra, S. S. 2014. Substrate dependent in vitro antifungal activity of Bacillus sp strain AR2. Microb. Cell Fact. 13: 67.   DOI
22 Slepecky, R. A. and Hemphill, H. E. 2006. The genus Bacillus: nonmedical. In: The Prokaryotes, Vol. 4, ed. by M. Dworkin, 530-562. Springer, New York, NY, USA.
23 Souto, G. I., Correa, O. S., Montecchia, M. S., Kerber, N. L., Pucheu, N. L., Bachur, M. and Garcia, A. F. 2004. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin‐like compounds. J. Appl. Microbiol. 97: 1247-1256.   DOI
24 Stanghellini, M. E. and Miller, R. M. 1997. Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis. 81: 4-12.   DOI
25 Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.   DOI
26 Tendulkar, S. R., Saikumari, Y. K., Patel, V., Raghotama, S., Munshi, T. K., Balaram, P. and Chattoo, B. B. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol. 103: 2331-2339.   DOI
27 Toure, Y., Ongena, M., Jacques, P., Guiro, A. and Thonart, P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96: 1151-1160.   DOI
28 Yamamoto, S., Shiraishi, S. and Suzuki, S. 2015. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13‐3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett. Appl. Microbiol. 60: 379-386.   DOI
29 Varadavenkatesan, T. and Murty, V. R. 2013. Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. ISRN Microbiol. 2013: 621519.
30 Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586.   DOI
31 Yang, H. J. 2015. Biological control activities of an insect endosymbiotic bacterium Bacillus amyloliquefaciens KB3. M.S. thesis. Chonnam National University, Gwangju, Korea.
32 Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181-187.   DOI
33 Yu, G. Y., Sinclair, J. B., Hartman, G. L. and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963.   DOI
34 Huszcza, E. and Burczyk, B. 2003. Biosurfactant production by Bacillus coagulans. J. Surfact. Deterg. 6: 61-64.   DOI
35 Cao, X. H., Liao, Z. Y., Wang, C. L., Yang, W. Y. and Lu, M. F. 2009. Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities. Braz. J. Microbiol. 40: 373-379.   DOI
36 Ahmad, F., Ahmad, I. and Khan, M. S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-181.   DOI
37 Ahn, J., Park, M. S., Kim, S. K., Choi, G. J., Jang, K. S., Choi, Y. H., Choi, J. E., Kim, I. S. and Kim, J. C. 2009. Suppression effect of gray mold and late blight on tomato plants by rhamnolipid B. Res. Plant Dis. 15: 222-229.   DOI
38 Arima, K., Kakinuma, A. and Tamura, G. 1968. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31: 488-494.   DOI
39 Arrebola, E., Jacobs, R. and Korsten, L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108: 386-395.   DOI
40 Bodour, A. A. and Miller-Maier, R. M. 1998. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods 32: 273-280.   DOI
41 Chitarra, G. S., Breeuwer, P., Nout, M. J., van Aelst, A. C., Rombouts, F. M. and Abee, T. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94: 159-166.   DOI
42 Chopineau, J., McCafferty, F. D., Therisod, M. and Klibanov, A. M. 1988. Production of biosurfactants from sugar alcohols and vegetable oils catalyzed by lipases in a nonaqueous medium. Biotechnol. Bioeng. 31: 208-214.   DOI
43 Katz, E. and Demain, A. L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449-474.
44 Chowdhury, S. P., Hartmann, A., Gao, X. and Borriss, R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42: a review. Front. Microbiol. 6: 780.
45 Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D. and Roberts, D. P. 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80: 115-123.   DOI
46 Govindasamy, V., Senthilkumar, M., Magheshwaran, V., Kumar, U., Bose, P., Sharma, V. and Annapurna, K. 2010. Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Plant Growth and Health Promoting Bacteria, ed. by D. K. Maheshwari, pp. 333-364. Springer, Berlin, Germany.
47 Kim, P. I., Ryu, J., Kim, Y. H. and Chi, Y. T. 2010. Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20: 138-145.
48 Kim, S. H., Lim, E. J., Lee, S. O., Lee, J. D. and Lee, T. H. 2000. Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol. Appl. Biochem. 31: 249-253.   DOI
49 Kolter, R. and Moreno, F. 1992. Genetics of ribosomally synthesized peptide antibiotics. Annu. Rev. Microbiol. 46: 141-163.   DOI
50 Kumar, N. P., Swapna, T. H., Sathi Reddy, K., Archana, K., Nageshwar, L., Nalini, S., Khan, M. Y. and Hameeda, B. 2016. Draft genome sequence of Bacillus amyloliquefaciens strain RHNK22, isolated from rhizosphere with biosurfactant (surfactin, iturin, and fengycin) and antifungal activity. Genome Announc. 4: e01682-15.