• Title/Summary/Keyword: fungal contamination

Search Result 90, Processing Time 0.029 seconds

Identification and Characterization of Fungi Contaminated in the Built-In Furniture of an Apartment Home

  • Choi, Min Ah;Ahn, Geum Ran;Kim, Seong Hwan
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.430-440
    • /
    • 2019
  • Fungal contamination of built-in furniture is a frequent problem in Korea when new apartment is built. However, domestic information on the contaminating fungi is very limited. This study was conducted to isolate, identify and characterize the fungi of the problem in one of the apartment houses where the fungi were claimed in the built-in furniture before the house owner moves in. Fungi present in the furniture installed in a main room, dress room, and kitchen side were visually and microscopically confirmed and purely isolated on PDA. The isolated fungi were identified by analyzing the morphological characteristics and nucleotide sequence of the ITS, calmodulin gene, and TEF-1α gene. Aspergillus creber, A. niger, A. pseudoglacus, A. ruber, Cladosporium perangustum and Penicillium commune were identified. Four out of the six fungal species were positive for at least one enzyme in six kinds of extracellular enzyme assays. When these four species (A. creber, A. niger, C. perangustum and P. commune) were inoculated onto four kinds of wood chips of furniture materials, they were able to colonize all of the wood chips. Their settlement was better at 95% humidity condition than at 30% humidity condition. Among the four species, C. perangustum caused the darkest discoloration and secreted the most number of extracellular enzymes. The four species were re-isolated from the colonized wood chips and confirmed as the problematic fungi in the built-in furniture.

Ten-Year Performance of Shell-Treated Wooden Deck

  • RA, Jong Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.667-673
    • /
    • 2019
  • The performance of a wooden deck made of refractory materials that have difficulties in achieving target penetrations as stipulated in the specification and quality standards for treated wood in Korea, was assessed via a case study in this research. A wooden deck built in Jinju in 2009 was selected for this study because of its fabrication method using pressure and treated refractory materials. The penetration and retention analysis did not satisfy the domestic standard for treated wood. Inspection of the deck in 2019 revealed that the deck had been attacked by decay fungi. Cap rails showed much deeper and wider checking on their surface compared with the top and base rails, resulting in a severe fungal attack. The decking boards exhibited severe fungal decay primarily in the end parts. However, the rails and balusters without checks and posts were virtually free of fungal attack irrespective of the preservative penetration measures. Copper content in the soil 5 cm away from the deck was less than 150 mg/kg, implying that copper movement in the soil was very limited. These results suggest that the inhibition of surface propagation and the protection of end surfaces are essential factors in increasing the longevity of treated wooden decks; further, the results also showed that the deck was within an acceptable range from the point of copper contamination.

Fungal Occurrence in Fresh and Dried Red Pepper (건고추 생산단계 중 고추의 곰팡이 발생)

  • Kim, Sosoo;Baek, Seul Gi;Hwang, Injun;Kim, Se-Ri;Jung, Gyusuck;Roh, Eunjung;Jang, Ja Yeong;Kim, Jeomsoon;Lee, Theresa
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.6
    • /
    • pp.571-575
    • /
    • 2019
  • Fungal occurrence during production of dried red pepper was investigated using red pepper samples collected at harvest, before and after washing, and before, during or after drying. Fungal incidence was evaluated by counting the number of fungal colonies grown after incubating random pepper cuts on potato dextrose agar plates. Washing with ground water had no significant effect on reduction of fungal contamination. Fungal increase was observed in some samples, and the insides of washer and containers were contaminated with fungi. Drying caused significant fungal increase regardless of drying method although the fungal incidence after machine drying was lower than that after greenhouse drying. Fungal increase was observed in the samples being dried in a greenhouse and some mycotoxigenic species were also detected. Therefore, the most important control point for fungal contamination during dried pepper production appears to be the drying process, especially in a greenhouse.

Microbe-Mediated Control of Mycotoxigenic Grain Fungi in Stored Rice with Focus on Aflatoxin Biodegradation and Biosynthesis Inhibition

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.44 no.2
    • /
    • pp.67-78
    • /
    • 2016
  • Rice contaminated with fungal species during storage is not only of poor quality and low economic value, but may also have harmful effects on human and animal health. The predominant fungal species isolated from rice grains during storage belong to the genera Aspergillus and Penicillium. Some of these fungal species produce mycotoxins; they are responsible for adverse health effects in humans and animals, particularly Aspergillus flavus, which produces the extremely carcinogenic aflatoxins. Not surprisingly, there have been numerous attempts to devise safety procedure for the control of such harmful fungi and production of mycotoxins, including aflatoxins. This review provides information about fungal and mycotoxin contamination of stored rice grains, and microbe-based (biological) strategies to control grain fungi and mycotoxins. The latter will include information regarding attempts undertaken for mycotoxin (especially aflatoxin) bio-detoxification and microbial interference with the aflatoxin-biosynthetic pathway in the toxin-producing fungi.

Survey of Fungal Infection and Fusarium Mycotoxins Contamination of Maize during Storage in Korea in 2015 (2015년 국내산 저장 옥수수에서의 후자리움 독소 오염 및 감염 곰팡이 조사)

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Heu, Sunggi;Shim, Hyeong Kwon
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.278-282
    • /
    • 2017
  • Maize is one of the most cultivated cereals as a staple food in the world. The harvested maize is mainly stored after drying, but its quality and nutrition could be debased by fungal spoilage and mycotoxin contamination. In this study, we surveyed mycotoxin contamination fungal infection of maize kernels that were stored for almost one year after harvest in 2015. The amount of deoxynivalenol and zearalenone detected were higher than the other mycotoxin, such as aflatoxin, ochratoxin, fumonisin and T-2 toxin. In particular, level of deoxynivalenol was detected as $1200{\pm}610{\mu}g/kg$ in small size kernels, which was four to six times higher than the large and the medium size kernels. Moreover, the amount of deoxynivalenol, zearalenone, and fumonisin were increased with discolored kernels. 10 species including Fusarium spp., Aspergillus spp. and Penicillium spp. were isolated from the maize kernels. F. graminearum was predominant in the discolored kernels with detection rates of 60% (red) and 40% (brown). Our study shows that the mycotoxin contents of stored maize can be increased by discolored maize kernels mixed. Therefore elimination of the contaminated maize kernels will help prevent fungal infection and mycotoxin contamination in stored maize.

Fungal Endophytes of Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa and Their Potential to Tolerate Heavy Metals and to Promote Plant Growth

  • Lalancette, Steve;Lerat, Sylvain;Roy, Sebastien;Beaulieu, Carole
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.415-429
    • /
    • 2019
  • Soil contamination by metals is of particular interest, given that their retention times within the profile can be indefinite. Thus, phytostabilization can be viewed as a means of limiting metal toxicity in soils. Due to their ability to grow on contaminated soils, alders have repeatedly been used as key species in phytostabilization efforts. Alder ability to grow on contaminated sites stems, in part, from its association with microbial endophytes. This work emphasizes the fungal endophytes populations associated with Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa (previously A. viridis ssp. crispa) under a phytostabilization angle. Fungal endophytes were isolated from alder trees that were growing on or near disturbed environments; their tolerances to Cu, Ni, Zn, and As, and acidic pH (4.3, 3, and 2) were subsequently assessed. Cryptosporiopsis spp. and Rhizoscyphus spp. were identified as fungal endophytes of Alnus for the first time. When used as inoculants for alder, some isolates promoted plant growth, while others apparently presented antagonistic relationships with the host plant. This study reports the first step in finding the right fungal endophytic partners for two species of alder used in phytostabilization of metal-contaminated mining sites.

Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea

  • Kandasamy, Sujatha;Park, Won Seo;Yoo, Jayeon;Yun, Jeonghee;Kang, Han Byul;Seol, Kuk-Hwan;Oh, Mi-Hwa;Ham, Jun Sang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1002-1011
    • /
    • 2020
  • Objective: This study was conducted to determine the composition and diversity of the fungal flora at various control points in cheese ripening rooms of 10 dairy farms from six different provinces in the Republic of Korea. Methods: Floor, wall, cheese board, room air, cheese rind and core were sampled from cheese ripening rooms of ten different dairy farms. The molds were enumerated using YM petrifilm, while isolation was done on yeast extract glucose chloramphenicol agar plates. Morphologically distinct isolates were identified using sequencing of internal transcribed spacer region. Results: The fungal counts in 8 out of 10 dairy farms were out of acceptable range, as per hazard analysis critical control point regulation. A total of 986 fungal isolates identified and assigned to the phyla Ascomycota (14 genera) and Basidiomycota (3 genera). Of these Penicillium, Aspergillus, and Cladosporium were the most diverse and predominant. The cheese ripening rooms was overrepresented in 9 farms by Penicillium (76%), while Aspergillus in a single farm. Among 39 species, the prominent members were Penicillium commune, P. oxalicum, P. echinulatum, and Aspergillus versicolor. Most of the mold species detected on surfaces were the same found in the indoor air of cheese ripening rooms. Conclusion: The environment of cheese ripening rooms persuades a favourable niche for mold growth. The fungal diversity in the dairy farms were greatly influenced by several factors (exterior atmosphere, working personnel etc.,) and their proportion varied from one to another. Proper management of hygienic and production practices and air filtration system would be effective to eradicate contamination in cheese processing industries.

A Monoclonal Antibody That Specifically Binds Chitosan In Vitro and In Situ on Fungal Cell Walls

  • Schubert, Max;Agdour, Siham;Fischer, Rainer;Olbrich, Yvonne;Schinkel, Helga;Schillberg, Stefan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1179-1184
    • /
    • 2010
  • We report the generation of the first monoclonal antibody that specifically binds to the polysaccharide chitosan. Mice were immunized with a mixture of chitosans, and hybridoma clones were screened for specific binders, resulting in the isolation of a single clone secreting a chitosan-specific IgM, mAbG7. In ELISAs, the antibody could bind to chitosans of varying composition, but demonstrated the highest affinity for chitosans with lower degrees of acetylation (DA) and very poor binding to chitin. We tested the ability of the antibody to bind to chitosan in situ, using preparations of fungal cell walls. Immunofluorescence microscopy confirmed that the antibody bound strongly to the cell walls of fungi with high levels of chitosan, whereas poor staining was observed in those species with cell walls of predominantly chitin or cellulose. The potential use of this antibody for the detection of fungal contamination and the protection of plants against fungal pathogens is discussed.

Natural Occurrence of Mycotoxin and Fungi in Korean Rice (국내산 미곡에 발생하는 곰팡이와 곰팡이독소)

  • Lee, Theresa;Lee, Soohyung;Lee, Jeong-Hwa;Yun, Jong-Chul;Oh, Kyeong-Suk
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.261-267
    • /
    • 2012
  • Inspection of deteriorated rices in Korea for fungal occurrence revealed that Aspergillus was the most frequently observed genus and some isolates of the Aspergillus spp. turned out to produce aflatoxin. Diverse fungal genera including Fusarium, Aspergillus, Penicillium, or Alternaria spp. were observed in most of the rice samples. Aflatoxin occurred infrequently and the levels of aflatoxin present in the rice samples were lower than regulatory limit but Fusarium toxins such as deoxynivalenol, nivalenol, zearalenone, and fumonisin occurred frequently. In rice processing complexes, fungal and mycotoxin contamination of rice decreased by milling process, resulting in the lowest level of mycotoxin and fungi in polished rice. Currently, it appears that Korean rice and milled by-products need a safety control for Fusarium toxins rather than aflatoxin.

Toxigenic Fungal Contaminants in the 2009-harvested Rice and Its Milling-by products Samples Collected from Rice Processing Complexes in Korea (전국 미곡종합처리장에서 채집한 2009년산 쌀과 가공부산물 시료의 독소생성곰팡이 오염)

  • Son, Seung-Wan;Nam, Young-Ju;Lee, Seung-Ho;Lee, Soo-Min;Lee, Soo-Hyung;Kim, Mi-Ja;Lee, Theresa;Yun, Jong-Chul;Ryu, Jae-Gee
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.280-287
    • /
    • 2011
  • This investigation was undertaken to survey toxigenic fungal contamination of various rice samples in 93 rice processing complexes (RPC) in Korea. Rice was grown in 2009 and the samples were collected in 2010. Seven types of rice samples such as unhusked, brown, blue-tinged, discolored, polished, half-crushed, and rice husks were obtained from each RPC. One-hundred and five grains of each sample were placed on PDA plates after surface disinfection. The incidence of fungal contaminants was 26.8%. Aspergillus spp. was the most dominant fungal contaminants and Fusarium spp. was the most frequently occurred in samples. The heaviest Fusarium contamination was found in unhusked grain, rice husks, and bare blue-tinged rice and followed by colored rice whereas broken rice was the least contaminated. Regional difference of fungal contamination was distinctive. Fusarium incidence in the rice samples from southern region of Korea including Jeolla and Gyeongsang Provinces was higher than those from central region including Chungcheong, Gyeonggi, and Gangwon Provinces. In contrast to Fusarium spp., Aspergillus spp. and Penicillium spp. were dominated in brown and polished rice samples and their incidences were more severe in central region than southern region. The major contaminants shown more than 1% of kernels infected were Aspergillus (5.0%), Fusarium (2.0%), Alternaria (1.4%), Dreschlera (1.3%), Penicillium spp. (1.3%), and Nigrospora spp. (1.0%). Collectotrichum, Pyricularia, Myrothecium, Epicoccum, Cladosporium, Moniliella, Gloeocercospora, Chaeto- mium, Curvularia, Phialopora, Acremonium, Gliomastix, Trichoderma, Rhizopus, Phomopsis, Paecilomyces, Genicularia, Geotrichum, Acremoniella, Rhizoctonia, Phoma, Oidiodendran, and Candida spp. were among the rest observed at low incidence. The major contaminants of rice samples were well-known as toxigenic fungal genera so toxin producibility of these fungal isolates is necessary to be examined in future. It is also needed to study Myrothecium spp. on species level as it was detected for the first time in rice.