DOI QR코드

DOI QR Code

Survey of Fungal Infection and Fusarium Mycotoxins Contamination of Maize during Storage in Korea in 2015

2015년 국내산 저장 옥수수에서의 후자리움 독소 오염 및 감염 곰팡이 조사

  • Kim, Yangseon (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kang, In Jeong (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Dong Bum (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Roh, Jae Hwan (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Heu, Sunggi (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Shim, Hyeong Kwon (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
  • 김양선 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 강인정 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 신동범 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 노재환 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 허성기 (농촌진흥청 국립식량과학원 재배환경과) ;
  • 심형권 (농촌진흥청 국립식량과학원 재배환경과)
  • Received : 2017.05.16
  • Accepted : 2017.05.30
  • Published : 2017.09.30

Abstract

Maize is one of the most cultivated cereals as a staple food in the world. The harvested maize is mainly stored after drying, but its quality and nutrition could be debased by fungal spoilage and mycotoxin contamination. In this study, we surveyed mycotoxin contamination fungal infection of maize kernels that were stored for almost one year after harvest in 2015. The amount of deoxynivalenol and zearalenone detected were higher than the other mycotoxin, such as aflatoxin, ochratoxin, fumonisin and T-2 toxin. In particular, level of deoxynivalenol was detected as $1200{\pm}610{\mu}g/kg$ in small size kernels, which was four to six times higher than the large and the medium size kernels. Moreover, the amount of deoxynivalenol, zearalenone, and fumonisin were increased with discolored kernels. 10 species including Fusarium spp., Aspergillus spp. and Penicillium spp. were isolated from the maize kernels. F. graminearum was predominant in the discolored kernels with detection rates of 60% (red) and 40% (brown). Our study shows that the mycotoxin contents of stored maize can be increased by discolored maize kernels mixed. Therefore elimination of the contaminated maize kernels will help prevent fungal infection and mycotoxin contamination in stored maize.

옥수수는 세계에서 가장 많이 재배되는 곡물 중 하나이며 중요한 식량자원이다. 생산 된 옥수수는 수확 및 건조 후에 저장되는데 저장 옥수수의 질을 떨어뜨리는 곰팡이 감염 및 곰팡이 독소는 생육 시기부터 저장기간 내내 발생한다. 이 연구는 우리나라에서 2015년 수확하여 1년정도 저장한 옥수수를 대상으로 옥수수의 크기와 변색 정도에 따른 감염 곰팡이 종과 독소검출을 조사하였다. 데옥시니발레놀과 제랄레논이 아플라톡신, 오크라톡신, 푸모니신, 티투독소보다 상대적으로 높은 수준으로 검출되었는데 특히, 데옥시니발레놀 경우 작은 낱알에서 $1200{\pm}610{\mu}g/kg$로 검출되었는데, 이는 이보다 큰 낱알에서 검출된 독소 함량에 비해 4배에서 6배까지 많은 양이 검출되었으며, 변색된 낱알의 혼입으로 인해 데옥시니발레놀, 제랄레논 및 푸모니신의 함량이 증가하였다. 곰팡이의 경우 Fusarium, Aspergillus 그리고 Penicillium 속 등 총 10종이 분리되었다. 이중 F. graminearum은 정상적인 낱알에 비해 변색 된 붉은색 낱알과 갈색 낱알에서 60%와 40%로 높은 빈도로 검출되었다. 따라서 수확 후 변색 또는 손상된 옥수수 낱알이 정상 낱알에 섞여 보관될 경우, 손상된 낱알에 오염되어 있던 병원균이 정상 낱알을 감염하여 진균 독소의 발생이 증가할 수 있으므로 오염 낱알의 제거가 곰팡이 및 독소의 오염 예방에 도움이 될 것이다.

Keywords

References

  1. Blandino, M., Reyneri, A., Vanara, F. and Ferreo, C. 2004. Control of mycotoxins in corn from harvesting to processing operation. In: Proceeding of International Quality Grains Conference, pp. 19-22. Luglio, Indianapolis, IN, USA.
  2. Fandohan, P., Ahouansou, R., Houssou, P., Hell, K., Marasas, W. F. and Wingfield, M. J. 2006. Impact of mechanical shelling and dehulling on Fusarium infection and fumonisin contamination in maize. Food Addit. Contam. 23: 415-421. https://doi.org/10.1080/02652030500442516
  3. Hell, K. 1997. Factors contributing to the distribution and incidence of aflatoxin producing fungi in stored maize in benin. Ph.D. dissertation. University of Hannover, Germany. 182 pp.
  4. Malon, B. M., Richard, J. L., Romer, T., Johansson, A. S. and Whitaker, T. 1998. Fumonisin reduction in corn by cleaning during storage discharge. In: Cereals 98, Proceedings of the 48th Australian Cereal Chemistry Conference, pp. 372-379. Royal Australian Chemical Institute, North Melbourne, Australia.
  5. Marin, S., Magan, N., Ramos, A. J. and Sanchis, V. 2004. Fumonisinproducing strains of Fusarium: a review of their ecophysiology. J. Food Prot. 67: 1792-1805. https://doi.org/10.4315/0362-028X-67.8.1792
  6. Mirocha, C. J., Abbas, H. K., Windels, C. E. and Xie, W. 1989. Variation in deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, and zearalenone production by Fusarium graminearum isolates. App. Environ. Microbiol. 55: 1315-1316.
  7. Mora, M. and Lacey, J. 1997. Handling and aflatoxin contamination of white maize in Costa Rica. Mycopathologia 138: 77-89. https://doi.org/10.1023/A:1006818822013
  8. Norred, W. P., Voss, K. A., Bacon, C. W. and Riley, R. T. 1991. Effectiveness of ammonia treatment in detoxification of fumonisincontaminated corn. Food Chem. Toxicol. 29: 815-819. https://doi.org/10.1016/0278-6915(91)90108-J
  9. Park, D. L. 2002. Effect of processing on aflatoxin. Adv. Exp. Med. Biol. 504: 173-179.
  10. Setarnou, M., Cardwell, K. F., Schulthess, F. and Hell, K. 1998. Effect of insect damage to maize ears, with special reference to Mussidia nigrivene Ua (Lepidoptera: Pyralidae), on Aspergillus flavus (Deuteromycetes: Monoliales) infection and aflatoxin production in maize before harvest in the Republic of Benin. J. Econ. Entomol. 91: 433-438. https://doi.org/10.1093/jee/91.2.433
  11. Summerell, B. A., Salleh, B. and Leslie, J. F. 2003. A utilitarian approach to Fusaium identification. Plant Dis. 87: 117-128. https://doi.org/10.1094/PDIS.2003.87.2.117
  12. Sutton, J. C. 1982. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can. J. Plant Pathol. 4: 195-209. https://doi.org/10.1080/07060668209501326
  13. Turner, P. C., Moore, S. E., Hall, A. J., Prentice, A. M. and Wild, C. P. 2003. Modification of immune function through exposure to dietary aflatoxin in Gambian children. Environ. Health Perspect. 111: 217-220.
  14. WorldCornProduction.com https://www.worldcornproduction.com/
  15. Wu, F. 2007. Measuring the economic impacts of Fusarium toxins in animal feeds. Anim. Feed Sci. Technol. 137: 363-374. https://doi.org/10.1016/j.anifeedsci.2007.06.010
  16. Zachariasova, M., Hajslova, J., Kostelanska, M., Poustka, J., Krplova, A., Cuhra, P. and Hochel, I. 2008. Deoxynivalenol and its conjugates in beer: a critical assessment of data obtained by enzymelinked immunosorbent assay and liquid chromatography coupled to tandem mass spectrometry. Anal. Chim. Acta 625: 77-86. https://doi.org/10.1016/j.aca.2008.07.014