References
- Roy S, Khasa DP, Greer CW. Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can J Bot. 2007;85(3):237-251. https://doi.org/10.1139/B07-017
- Ledin M. Accumulation of metals by microorganisms - processes and importance for soil systems. Earth Sci Rev. 2000;51(1-4):1-31. https://doi.org/10.1016/S0012-8252(00)00008-8
- Khan MS, Zaidi A, Wani PA, et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett. 2009;7(1):1-19. https://doi.org/10.1007/s10311-008-0155-0
- Pourrut B, Lopareva-Pohu A, Pruvot C, et al. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial part 2. Influence on plants. Sci Total Environ. 2011;409(21):4504-4510. https://doi.org/10.1016/j.scitotenv.2011.07.047
- Lorenc-Plucinska G, Walentynowicz M, Niewiadomska A. Capabilities of alders (Alnus incana and A. glutinosa) to grow in metal-contaminated soil. Ecol Eng. 2013;58:214-227. https://doi.org/10.1016/j.ecoleng.2013.07.002
- Hibbs DE, Cromack K. Actinorhizal plants in Pacific Northwest forests. In: Schwintzer CR, Tjepkema JD, editors. The biology of Frankia and actinorhizal plants. London: Academic Press; 1990. p. 343-363.
- Bissonnette C, Fahlman B, Peru KM, et al. Symbiosis with Frankia sp. benefits the establishment of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa in tailings sand from the Canadian oil sands industry. Ecol Eng. 2014;68:167-175. https://doi.org/10.1016/j.ecoleng.2014.03.061
- Diem HG. Les mycorhizes des plantes actinorhiziennes. Act Bot Gallica. 1996;143(7):581-592. https://doi.org/10.1080/12538078.1996.10515360
- Bhatti JS, Foster NW, Hazlett PW. Fine root biomass and nutrient content in a black spruce peat soil with and without alder. Can J Soil Sci. 1998;78(1):163-169. https://doi.org/10.4141/S96-097
- Kuznetsova T, Lukjanova A, Mandre M, et al. Aboveground biomass and nutrient accumulation dynamics in young black alder, silver birch and Scots pine plantations on reclaimed oil shale mining areas in Estonia. Forest Ecol Manag. 2011;262(2):56-64. https://doi.org/10.1016/j.foreco.2010.09.030
- Giardina CP, Huffman S, Binkley D, et al. Alders increase soil phosphorus availability in a Douglasfir plantation. Can J For Res. 1995;25(10):1652-1657. https://doi.org/10.1139/x95-179
- Walker JKM, Cohen H, Higgins LM, et al. Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis. New Phytol. 2014;202(1):287-296. https://doi.org/10.1111/nph.12638
- Molina R. Ectomycorrhizal specificity in the genus Alnus. Can J Bot. 1981;59(3):325-334. https://doi.org/10.1139/b81-045
- Godbout AC, Fortin JA. Morphological features of synthesized ectomycorrhizae of Alnus crispa and A. rugosa. New Phytol. 1983;94(2):249-262. https://doi.org/10.1111/j.1469-8137.1983.tb04498.x
- Tedersoo L, Suvi T, Jairus T, et al. Revisiting ectomycorrhizal fungi of the genus Alnus: differential host specificity, diversity and determinants of the fungal community. New Phytol. 2009;182(3):727-735. https://doi.org/10.1111/j.1469-8137.2009.02792.x
- Kennedy P, Nguyen N, Cohen H, et al. Missing checkerboards? An absence of competitive signal in Alnus-associated ectomycorrhizal fungal communities. Peer J. 2014;2:e686. https://doi.org/10.7717/peerj.686
- Kennedy PG, Walker JKM, Bogar LM. Interspecific mycorrhizal networks and non-networking hosts: exploring the ecology of the host genus Alnus. In: Horton TR, editor. Mycorrhizal networks. Dordrecht, Netherlands: Springer; 2015. p. 227-254.
- Xu R, Li T, Cui H, et al. Diversity and characterization of Cd-tolerant dark septate endophytes (DSEs) associated with the roots of Nepal alder (Alnus nepalensis) in a metal mine tailing of southwest China. App Soil Ecol. 2015;93:11-18. https://doi.org/10.1016/j.apsoil.2015.03.013
- Jumpponen A, Trappe JM. Dark-septate root endophytes: a review with special reference to facultative biotrophic symbiosis. New Phytol. 1998;140(2):295-310. https://doi.org/10.1046/j.1469-8137.1998.00265.x
- Mandyam K, Loughin T, Jumpponen A. Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass. Mycologia. 2010;102(4):813-821. https://doi.org/10.3852/09-212
- Wilcox HE, Wang C. Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month-old tree seedlings. Can J For Res. 1987;17(8):884-899. https://doi.org/10.1139/x87-140
- Stoyke G, Currah RS. Resynthesis in pure culture of a common subalpine fungus-root association using Phialocephala fortinii and Menziesia ferruginea (Ericaceae). Arctic Alpine Res. 1993;25(3):189-193. https://doi.org/10.2307/1551812
- Tellenbach C, Grunig CR, Sieber TN. Negative effects on survival and performance of Norway spruce seedlings colonized by dark septate root endophytes are primarily isolate-dependent. Environ Microbiol. 2011;13(9):2508-2517. https://doi.org/10.1111/j.1462-2920.2011.02523.x
- Reininger V, Grunig CR, Sieber TN. Host species and strain combination determine growth reduction of spruce and birch seedlings colonized by root-associated dark septate endophytes. Environ Microbiol. 2012;14(4):1064-1076. https://doi.org/10.1111/j.1462-2920.2011.02686.x
- Mayerhofer MS, Kernaghan G, Harper KA. The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza. 2013;23(2):119-128. https://doi.org/10.1007/s00572-012-0456-9
- Newsham KK. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytol. 1999;144(3):517-524. https://doi.org/10.1046/j.1469-8137.1999.00537.x
- Newsham KK. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 2011;190(3):783-793. https://doi.org/10.1111/j.1469-8137.2010.03611.x
- Upson R, Read DJ, Newsham KK. Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza. 2009;20(1):1-11. https://doi.org/10.1007/s00572-009-0260-3
- Mandyam K, Jumpponen A. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol. 2005;53:173-189. https://doi.org/10.3114/sim.53.1.173
- Jumpponen A, Mattson KG, Trappe JM. Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza. 1998;7(5):261-265. https://doi.org/10.1007/s005720050190
- Della Monica IF, Saparrat MCN, Godeas AM, et al. The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes. Fungal Ecol. 2015;17:10-17. https://doi.org/10.1016/j.funeco.2015.04.004
- Berthelot C, Leyval C, Foulon J, et al. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiol Ecol. 2016;92:1-14.
- Rajkumar M, Sandhya S, Prasad MNV, et al. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv. 2012;30(6):1562-1574. https://doi.org/10.1016/j.biotechadv.2012.04.011
- Belanger P-A, Bellenger J-P, Roy S. Heavy metal stress in alders: tolerance and vulnerability of the actinorhizal symbiosis. Chemosphere. 2015;138:300-308. https://doi.org/10.1016/j.chemosphere.2015.06.005
- Godbold DL, Jentschke G, Winter S, et al. Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere. 1998;36(4-5):757-762. https://doi.org/10.1016/S0045-6535(97)10120-5
- Jentschke G, Godbold DL. Metal toxicity and ectomycorrhizas. Physiol Plant. 2000;109(2):107-116. https://doi.org/10.1034/j.1399-3054.2000.100201.x
- Schutzendubel A, Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot. 2002;53(372):1351-1365. https://doi.org/10.1093/jexbot/53.372.1351
- Vralstad T, Schumacher T, Taylor A. Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol. 2002;153(1):143-152. https://doi.org/10.1046/j.0028-646X.2001.00290.x
- Regvar M, Likar M, Piltaver A, et al. Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant Soil. 2010;330(1-2):345-356. https://doi.org/10.1007/s11104-009-0207-7
- Zhang Y, Li T, Zhao Z. Colonization characteristics and composition of dark septate endophytes (DSE) in a lead and zinc slag heap in Southwest China. Soil Sediment Contam. 2013;22(5):532-545. https://doi.org/10.1080/15320383.2013.750267
- Colpaert JV, Wevers JHL, Krznaric E, et al. How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci. 2011;68(1):17-24. https://doi.org/10.1007/s13595-010-0003-9
- Deram A, Languereau F, Haluwyn C. Mycorrhizal and endophytic fungal colonization in Arrhenatherum elatius L. roots according to the soil contamination in heavy metals. Soil Sediment Contam. 2011;20(1):114-127. https://doi.org/10.1080/15320383.2011.528470
- Likar M, Regvar M. Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant Soil. 2013;370(1-2):593-604. https://doi.org/10.1007/s11104-013-1656-6
- Berthelot C, Blaudez D, Leyval C. Differential growth promotion of poplar and birch inoculated with three dark septate endophytes in two trace element-contaminated soils. Int J Phytorem. 2017;11:1118-1125. https://doi.org/10.1080/15226514.2017.1328392
- MDDEP. Directive 019 sur l'industrie miniere. Ministere du developpement durable, de l'environnement et des parcs. Gouvernement du quebec. 2012 [accessed 2019 May 21]. Available from: http://www.mddelcc.gouv.qc.ca/milieu_ind/directive019/directive019.pdf
- Molina R, Palmer JG. Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC, editor. Methods and principles of mycorrhizal research. St Paul (MN): American Phytopathological Society; 1982. p. 115-129.
- Yamada A, Ogura T, Degawa Y, et al. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field collected ectomycorrhizas. Mycoscience. 2001;42(1):43-50. https://doi.org/10.1007/BF02463974
- Marx DH. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections: antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology. 1969;59:153-163.
- White TJ, Bruns TD, Lee SB, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. New York (NY): Academic Press; 1990. p. 315-322.
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-425.
- Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-120. https://doi.org/10.1007/BF01731581
- Belanger P-A, Bissonnette C, Berneche-D'Amours A, et al. Assessing the adaptability of the actinorhizal symbiosis in the face of environmental change. Environ Exp Bot. 2011;74:98-105. https://doi.org/10.1016/j.envexpbot.2011.05.004
- Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Calif Agric Exp Stan Circ. 1950;347:1-32.
- Vierheilig H, Coughlan AP, Wyss U, et al. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol. 1998;64(12):5004-5007. https://doi.org/10.1128/aem.64.12.5004-5007.1998
- Blaudez D, Jacob C, Turnau K, et al. Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol Res. 2000;104(11):1366-1371. https://doi.org/10.1017/S0953756200003166
- Zijlstra JD, Van't Hof P, Baar J, et al. Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Stud Mycol. 2005;53:147-162. https://doi.org/10.3114/sim.53.1.147
- Garbaye J. La symbiose mycorhizienne: une association entre les plantes et les champignons. 1st ed. Collection: Syntheses. Versaille: Editions Quae. 2013;1-280.
- Vohn M, Mrnka L, Sov TL, et al. The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol. 2013;6:281-292. https://doi.org/10.1016/j.funeco.2013.03.006
- Adriaensen K, Vangronsveld J, Colpaert JV. Zinctolerant Suillus bovinus improves growth of Znexposed Pinus sylvestris seedlings. Mycorrhiza. 2006;16(8):553-558. https://doi.org/10.1007/s00572-006-0072-7
- Bois G, Piche Y, Fung MYP, et al. Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza. 2005;15(3):149-158. https://doi.org/10.1007/s00572-004-0315-4
- Polme S, Bahram M, Yamanaka T, et al. Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol. 2013;198(4):1239-1249. https://doi.org/10.1111/nph.12170
- Roy M, Rochet J, Manzi S, et al. What determines Alnus-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. New Phytol. 2013;198(4):1228-1238. https://doi.org/10.1111/nph.12212
- Kennedy PG, Hill LT. A molecular and phylogenetic analysis of the structure and specificity of Alnus rubra ectomycorrhizal assemblages. Fungal Ecol. 2010;3(3):195-204. https://doi.org/10.1016/j.funeco.2009.08.005
- Bogar LM, Kennedy PG. New wrinkles in an old paradigm: neighborhood effects can modify the structure and specificity of Alnus-associated ectomycorrhizal fungal communities. FEMS Microbiol Ecol. 2013;83(3):767-777. https://doi.org/10.1111/1574-6941.12032
- Massicotte HB, Melville LH, Peterson RL, et al. Comparative studies of ectomycorrhiza formation in Alnus glutinosa and Pinus resinosa with Paxillus involutus. Mycorrhiza. 1999;8(5):229-240. https://doi.org/10.1007/s005720050239
- Yu T, Nassuth A, Peterson RL. Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots. Can J Microbiol. 2001;47(8):741-753. https://doi.org/10.1139/cjm-47-8-741
- Oldroyd G. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol. 2013;11(4):252-263. https://doi.org/10.1038/nrmicro2990
- Daguerre Y, Plett JM, Venneault-Fourrey C. Signaling pathways driving the development of ectomycorrhizal symbiosis. In: Martin F, editor. Molecular mycorrhizal symbiosis. Hoboken (NJ): Wiley; 2016. p. 141-157.
- Genre A, Russo G. Does a common pathway transduce symbiotic signals in plant-microbe interactions? Front Plant Sci. 2016;7:1-8.
- Hambleton S, Sigler L. Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae ( Hymenoscyphus ericae), Leotiomycetes. Stud Mycol. 2005;53:1-27. https://doi.org/10.3114/sim.53.1.1
- Egerton-Warburton LM, Griffin BJ. Differential responses of Pisolithus tinctorius isolates to aluminum in vitro. Can J Bot. 1995;73(8):1229-1233. https://doi.org/10.1139/b95-133
- Hartley J, Cairney JWG, Meharg AA. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil. 1997;189(2):303-319. https://doi.org/10.1023/A:1004255006170
- Ban Y, Tang M, Chen H, et al. The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS One. 2012;7(10):e47968-11. https://doi.org/10.1371/journal.pone.0047968
- Adle DJ, Sinani D, Kim H, et al. A cadmiumtransporting P1B-type ATPase in yeast Saccharomyces cerevisiae. J Biol Chem. 2007;282(2):947-955. https://doi.org/10.1074/jbc.M609535200
- Arguello JM, Eren E, Gonzalez-Guerrero M. The structure and function of heavy metal transport P1B-ATPases. BioMetals. 2007;20(3-4):233-248. https://doi.org/10.1007/s10534-006-9055-6
- Kramer U, Talke IN, Hanikenne M. Transition metal transport. FEBS Lett. 2007;581(12):2263-2272. https://doi.org/10.1016/j.febslet.2007.04.010
- Fogarty RV, Tobin JM. Fungal melanins and their interaction with metals. Enzyme Microb Tech. 1996;19(4):311-317. https://doi.org/10.1016/0141-0229(96)00002-6
- Bellion M, Courbot M, Jacob C, et al. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett. 2006;254(2):173-181. https://doi.org/10.1111/j.1574-6968.2005.00044.x
- Likar M, Regvar M. Application of temporal temperature gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. Sci Total Environ. 2009;407(24):6179-6187. https://doi.org/10.1016/j.scitotenv.2009.08.045
- Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133-164.
- Ngu M, Moya E, Magan N. Tolerance and uptake of cadmium, arsenic and lead by Fusarium pathogens of cereals. Int Biodeter Biodegr. 1998;42(1):55-62. https://doi.org/10.1016/S0964-8305(98)00047-X
- Kabata-Pendias A, Pendias H. Trace elements in soils and plants. 3rd ed. Boca Raton (FL): CrC Press; 2001.
- Buckova M, Godocikova J, Polek B. Responses in the mycelial growth of Aspergillus niger isolates to arsenic contaminated environments and their resistance to exogenic metal stress. J Basic Microbiol. 2007;47(4):295-300. https://doi.org/10.1002/jobm.200610299
- Adeyemi AO. Bioaccumulation of arsenic by fungi. Am J Environ Sci. 2009;5(3):364-370. https://doi.org/10.3844/ajessp.2009.364.370
- Mohammadi-Bardbori A, Rannug A. Arsenic, cadmium, mercury and nickel stimulate cell growth via NADPH oxidase activation. Chem Biol Interact. 2014;224:183-188. https://doi.org/10.1016/j.cbi.2014.10.034