• Title/Summary/Keyword: functional perturbed differential system

Search Result 19, Processing Time 0.022 seconds

LIPSCHITZ AND ASYMPTOTIC STABILITY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Choi, Sang Il;Goo, Yoon Hoe
    • The Pure and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • The present paper is concerned with the notions of Lipschitz and asymptotic for perturbed functional differential system knowing the corresponding stability of functional differential system. We investigate Lipschitz and asymptotic stability for perturbed functional differential systems. The main tool used is integral inequalities of the Bihari-type, and all that sort of things.

BOUNDEDNESS IN FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.347-359
    • /
    • 2016
  • In this paper, we show that the solutions to perturbed functional differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$$, have a bounded properties. To show the bounded properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$ and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of $t_{\infty}$-similarity.

BOUNDEDNESS IN FUNCTIONAL PERTURBED DIFFERENTIAL SYSTEMS

  • Im, Dong Man;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • This paper shows that the solutions to the perturbed dierential system $$y^{\prime}=f(t,y)+{\int}_{t_o}^{t}g(s,y(s))ds+h(t,y(t),Ty(t))$$ have bounded property. To show this property, we impose conditions on the perturbed part ${\int}^{t}_{t_o}g(s,y(s))ds+h(t,y(t),Ty(t))$ and on the fundamental matrix of the unperturbed system y' = f(t, y).

ASYMPTOTIC PROPERTY FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Im, Dong Man;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • This paper shows that the solutions to nonlinear perturbed functional differential system $$y^{\prime}=f(t,y)+{\int}^t_{t_0}g(s,y(s),Ty(s))ds+h(t,y(t))$$ have the asymptotic property by imposing conditions on the perturbed part ${\int}^t_{t_0}g(s,y(s),Ty(s))ds,h(t,y(t))$ and on the fundamental matrix of the unperturbed system y' = f(t, y).