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ASYMPTOTIC PROPERTY FOR PERTURBED NONLINEAR

FUNCTIONAL DIFFERENTIAL SYSTEMS

DONG MAN IM AND YOON HOE GOO*

Abstract. This paper shows that the solutions to the perturbed nonlin-
ear functional differential system

y′ = f(t, y) +

∫ t

t0

g(s, y(s), Ty(s))ds, f(t, 0) = 0, g(t, 0, 0) = 0

go to zero as t goes to infinity. To show asymptotic property, we impose

conditions on the perturbed part
∫ t
t0

g(s, y(s), Ty(s))ds and the fundamen-

tal matrix of the unperturbed system y′ = f(t, y).
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1. Introduction

Elaydi and Farran [8] introduced the notion of exponential asymptotic stabil-
ity(EAS) which is a stronger notion than that of ULS. They investigated some
analytic criteria for an autonomous differential system and its perturbed systems
to be EAS. Pachpatte [13] investigated the stability and asymptotic behavior of
solutions of the functional differential equation. Gonzalez and Pinto [9] proved
theorems which relate the asymptotic behavior and boundedness of the solutions
of nonlinear differential systems. Choi et al. [6,7] examined Lipschitz and expo-
nential asymptotic stability for nonlinear functional systems. Also, Goo [11] and
Choi and Goo [2,4] investigated Lipschitz and asymptotic stability for perturbed
differential systems.

In this paper we will obtain some results on asymptotic property for nonlinear
perturbed differential systems. We will employ the theory of integral inequalities
to study asymptotic property for solutions of the nonlinear differential systems.
The method incorporating integral inequalities takes an important place among
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the methods developed for the qualitative analysis of solutions to linear and
nonlinear system of differential equations.

2. Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0, (1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-space.
We assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on
R+ ×Rn and f(t, 0) = 0. Also, we consider the perturbed differential system of
(1)

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0, (2)

where g ∈ C(R+×Rn×Rn,Rn), g(t, 0, 0) = 0, and T : C(R+,Rn) → C(R+,Rn)
is a continuous operator .

For x ∈ Rn, let |x| = (
∑n

j=1 x
2
j )

1/2. For an n× n matrix A, define the norm

|A| of A by |A| = sup|x|≤1 |Ax|.
Let x(t, t0, x0) denote the unique solution of (1) with x(t0, t0, x0) = x0, exist-

ing on [t0,∞). Then we can consider the associated variational systems around
the zero solution of (1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0 (3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0. (4)

The fundamental matrix Φ(t, t0, x0) of (4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (3).
Before giving further details, we give some of the main definitions that we

need in the sequel [8].

Definition 2.1. The system (1) (the zero solution x = 0 of (1)) is called
(S)stable if for any ϵ > 0 and t0 ≥ 0, there exists δ = δ(t0, ϵ) > 0 such that if
|x0| < δ , then |x(t)| < ϵ for all t ≥ t0 ≥ 0,
(AS)asymptotically stable if it is stable and if there exists δ = δ(t0) > 0 such
that if |x0| < δ , then |x(t)| → 0 as t → ∞,
(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such that
|x(t)| ≤ M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0,
(EAS) exponentially asymptotically stable if there exist constants K > 0 , c > 0,
and δ > 0 such that

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t
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provided that |x0| < δ,
(EASV) exponentially asymptotically stable in variation if there exist constants
K > 0 and c > 0 such that

|Φ(t, t0, x0)| ≤ K e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < ∞.

Remark 2.1 ([9]). The last definition implies that for |x0| ≤ δ

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t.

We give some related properties that we need in the sequel. We need Alekseev
formula to compare between the solutions of (1) and the solutions of perturbed
nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0, (5)

where g ∈ C(R+ × Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the
solution of (5) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of con-
stants formula due to Alekseev [1].

Lemma 2.1. Let x and y be a solution of (1) and (5), respectively. If y0 ∈ Rn,
then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn, y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Lemma 2.2 (Bihari-type inequality). Let u, λ ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c+

∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
,

where t0 ≤ t < b1, W (u) =
∫ u

u0

ds
w(s) , W

−1(u) is the inverse of W (u), and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ(s)ds ∈ domW−1
}
.

Lemma 2.3 ([10]). Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)), and w(u) be
nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)

∫ s

t0

(λ2(τ)w(u(τ)) + λ3(τ)

∫ τ

t0

λ4(r)u(r)dr)dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0
λ1(s)

∫ s

t0
(λ2(τ) + λ3(τ)

∫ τ

t0
λ4(r)dr)dτds

]
,
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where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.2, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ1(s)

∫ s

t0

(λ2(τ) + λ3(τ)

∫ τ

t0

λ4(r)dr)dτds ∈ domW−1
}
.

Lemma 2.4 ([3]). Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7 ∈ C(R+), w ∈ C((0,∞)), and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤
t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)

∫ s

t0

(λ3(τ)w(u(τ))

+ λ4(τ)

∫ τ

t0

λ5(r)w(u(r))dr)dτds+

∫ t

t0

λ6(s)

∫ s

t0

λ7(τ)u(τ)dτds.

(6)

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr)dτ

+ λ6(s)

∫ s

t0

λ7(τ)dτ)ds
]
,

(7)

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.2, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0
(λ1(s) + λ2(s)

∫ s

t0
(λ3(τ) + λ4(τ)

∫ τ

t0
λ5(r)dr)dτ

+λ6(s)
∫ s

t0
λ7(τ)dτ)ds ∈ domW−1

}
.

Proof. Define a function v(t) by the right member of (6). Then, we have v(t0) = c
and

v′(t) = λ1(t)u(t) + λ2(t)
(∫ t

t0

(λ3(s)w(u(s)) + λ4(s)

∫ s

t0

λ5(τ)w(u(τ))dτ)ds

+λ6(t)

∫ t

t0

λ7(s)u(s)ds
)

≤
[
λ1(t) + λ2(t)

(∫ t

t0

(λ3(s) + λ4(s)

∫ s

t0

λ5(τ)dτ)ds

+λ6(t)

∫ t

t0

λ7(s)ds
)]

w(v(t)),

t ≥ t0, since v(t) is nondecreasing, u ≤ w(u), and u(t) ≤ v(t). Now, by integrat-
ing the above inequality on [t0, t] and v(t0) = c, we have

v(t) ≤ c+

∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr)dτ

+ λ6(s)

∫ s

t0

λ7(τ)dτ
)
w(z(s))ds.

(8)

It follows from Lemma 2.2 that (8) yields the estimate (7). �
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For the proof we need the following corollary from Lemma 2.4.

Corollary 2.5. Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞)), and w(u)
be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)

∫ s

t0

λ2(τ)u(τ)dτds+

∫ t

t0

λ3(s)

∫ s

t0

(λ4(τ)w(u(τ))

+λ5(τ)

∫ τ

t0

λ6(r)w(u(r))dr)dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0
(λ1(s)

∫ s

t0
λ2(τ)dτ + λ3(s)

∫ s

t0
(λ4(τ)

+λ5(τ)
∫ τ

t0
λ6(r)dr)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.2, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0
(λ1(s)

∫ s

t0
λ2(τ)dτ + λ3(s)

∫ s

t0
(λ4(τ)

+λ5(τ)
∫ τ

t0
λ6(r)dr)dτ)ds ∈ domW−1

}
.

Lemma 2.6 ([5]). Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞)) and w(u)
be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)u(τ)dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

(9)
Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ + λ5(s)

∫ s

t0

λ6(τ)dτ)ds
]
,

(10)
where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.2, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ)ds ∈ domW−1
}
.

Proof. Define a function z(t) by the right member of (9). Then, we have z(t0) = c
and

z′(t) = λ1(t)u(t) + λ2(t)w(u(t)) + λ3(t)
∫ t

t0
λ4(s)u(s)ds+ λ5(t)

∫ t

t0
λ6(s)w(u(s))ds

≤ (λ1(t) + λ2(t) + λ3(t)
∫ t

t0
λ4(s)ds+ λ5(t)

∫ t

t0
λ6(s)ds)w(z(t)), t ≥ t0,
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since z(t) and w(u) are nondecreasing, u ≤ w(u), and u(t) ≤ z(t). Therefore, by
integrating on [t0, t], the function z satisfies

z(t) ≤ c+

∫ t

t0

(λ1(s)+λ2(s)+λ3(s)

∫ s

t0

λ4(τ)dτ)w(z(s))+λ5(s)

∫ s

t0

λ6(τ)dτ)w(z(s)))ds. (11)

It follows from Lemma 2.2 that (11) yields the estimate (10). �
We prepare two corollaries from Lemma 2.6 that are used in proving the

theorems.

Corollary 2.7. Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u) be nonde-
creasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+
∫ t

t0
λ1(s)w(u(s))ds+

∫ t

t0
λ2(s)

∫ s

t0
λ3(τ)u(τ)dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.2, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds ∈ domW−1
}
.

Corollary 2.8. Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)) and w(u) be non-
decreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+
∫ t

t0
λ1(s)u(s)ds+

∫ t

t0
λ2(s)w(u(s))ds

+
∫ t

t0
λ3(s)

∫ s

t0
λ4(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.2, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ)ds ∈ domW−1
}
.

3. Main results

In this section, we investigate asymptotic property for solutions of perturbed
nonlinear functional differential systems.

Theorem 3.1. Let the solution x = 0 of ( 1) be EASV. Suppose that the per-
turbing term g(t, y, Ty) satisfies

|g(t, y(t), Ty(t))| ≤ e−αt
(
a(t)w(|y(t)|) + |Ty(t)|

)
, (12)

and

|Ty(t)| ≤ b(t)

∫ t

t0

k(s)|y(s)|ds, (13)
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where α > 0, a, b, k, w ∈ C(R+), a, b, k, w ∈ L1(R+), w(u) is nondecreasing in
u, and u ≤ w(u). If

M(t0) = W−1
[
W (c) +

∫ ∞

t0

Meαs
∫ s

t0

[a(τ) + b(τ)

∫ τ

t0

k(r)dr]dτds
]
< ∞, (14)

where t ≥ t0 and c = |y0|Meαt0 , then all solutions of (2) approach zero as
t → ∞.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (2),
respectively. Since the solution x = 0 of (1) is EASV, it is EAS by remark 2.1.
Using Lemma 2.1, (12), and (13), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ), T y(τ))|dτds

≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)

∫ s

t0

e−ατ (a(τ)w(|y(τ)|)

+b(τ)

∫ τ

t0

k(r)e−αr|y(r)|dr)dτds.

Then, we obtain

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)

∫ s

t0

(a(τ)w(|y(τ)|eατ )

+b(τ)

∫ τ

t0

k(r)|y(r)|eαrdr)dτds,

since w is nondecreasing. Set u(t) = |y(t)|eαt. By Lemma 2.3 and (14) we have

|y(t)| ≤ e−αtW−1
[
W (c) +

∫ t

t0

Meαs
∫ s

t0

[a(τ) + b(τ)

∫ τ

t0

k(r)dr]dτds
]

≤ e−αtM(t0), t ≥ t0,

where c = M |y0|eαt0 . The above estimation yields the desired result. �

Remark 3.1. Letting b(t) = 0 in Theorem 3.1, we obtain the similar result as
that of Theorem 3.5 in [4].

Theorem 3.2. Let the solution x = 0 of (1) be EASV. Suppose that the per-
turbing term g(t, y, Ty) satisfies

|g(t, y(t), T y(t))| ≤ e−αt
(
a(t)|y(t)|+ |Ty(t)|

)
, (15)

and

|Ty(t)| ≤ b(t)w(|y(t)|) + c(t)

∫ t

t0

k(s)w(|y(s)|)ds, (16)
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where α > 0, a, b, c, k, w ∈ C(R+), a, b, c, k, w ∈ L1(R+), w(u) is nondecreasing
in u, u ≤ w(u). If

M(t0) = W−1
[
W (c) +

∫ ∞

t0

Meαs

∫ s

t0

[a(τ) + b(τ) + c(τ)

∫ τ

t0

k(r)dr]dτds
]
< ∞, (17)

where t ≥ t0 and c = |y0|Meαt0 , then all solutions of (2) approach zero as
t → ∞.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (2),
respectively. Since the solution x = 0 of (1) is EASV, it is EAS by Remark 2.1.
Applying Lemma 2.1, (15), and (16), we have

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)

∫ s

t0

e−ατ (a(τ)|y(τ)|+ b(τ)w(|y(τ)|)

+c(τ)

∫ τ

t0

k(r)e−αrw(|y(r)|)dr)dτds.

Since w is nondecreasing, we obtain

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)

∫ s

t0

(a(τ)|y(τ)|eατ + b(τ)w(|y(τ)|eατ )

+c(τ)

∫ τ

t0

k(r)w(|y(r)|eαr)dr)dτds.

Set u(t) = |y(t)|eαt. By Corollary 2.5 and (17), we have

|y(t)| ≤ e−αtW−1
[
W (c) +

∫ t

t0

Meαs
∫ s

t0

[a(τ) + b(τ) + c(τ)

∫ τ

t0

k(r)dr]dτds
]

≤ e−αtM(t0), t ≥ t0,

where c = M |y0|eαt0 . From the above estimation, we obtain the desired result.
�

Remark 3.2. Letting w(u) = u, b(t) = c(t) = 0 in Theorem 3.2, we obtain the
similar result as that of Corollary 3.6 in [4].

Theorem 3.3. Let the solution x = 0 of (1) be EASV. Suppose that the perturbed
term g(t, y, Ty) satisfies∫ t

t0

|g(s, y(s), T y(s))|ds ≤ e−αt
(
a(t)w(|y(t)|) + |Ty(t)|

)
, (18)

and

|Ty(t)| ≤ b(t)

∫ t

t0

k(s)|y(s)|ds, (19)

where α > 0, a, b, k, w ∈ C(R+), a, b, k, w ∈ L1(R+) and w(u) is nondecreasing
in u, u ≤ w(u). If

M(t0) = W−1
[
W (c) +M

∫ ∞

t0

(a(s) + b(s)

∫ s

t0

k(τ)dτ)ds
]
< ∞, (20)
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where b1 = ∞ and c = M |y0|eαt0 , then all solutions of (2) approach zero as
t → ∞.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (2),
respectively. Since the solution x = 0 of (1) is EASV, it is EAS. By conditions,
Lemma 2.1, (18), and (19), we have

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)[e−αsa(s)w(|y(s)|)

+e−αsb(s)

∫ s

t0

k(τ)|y(τ)|dτ ]ds.

Since w is nondecreasing, we have

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−αta(s)w(|y(s)|eαs)ds

+

∫ t

t0

Me−αtb(s)

∫ s

t0

k(τ)|y(τ)|eατdτds.

Then, it follows from Corollary 2.7 with u(t) = |y(t)|eαt and (20) that

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(a(s) + b(s)

∫ s

t0

k(τ)dτ)ds
]

≤ e−αtM(t0), t ≥ t0,

where c = M |y0|eαt0 . Hence, all solutions of (2) approach zero as t → ∞ , and
so the proof is complete. �

Remark 3.3. Letting b(t) = 0 in Theorem 3.3, we obtain the similar result as
that of Theorem 3.7 in [4].

Theorem 3.4. Let the solution x = 0 of (1) be EASV. Suppose that the perturbed
term g(t, y, Ty) satisfies∫ t

t0

|g(s, y(s), T y(s))|ds ≤ e−αt
(
a(t)|y(t)|+ |Ty(t)|

)
, (21)

and

|Ty(t)| ≤ b(t)w(|y(t)|) + c(t)

∫ t

t0

k(s)w(|y(s)|)ds, (22)

where α > 0, a, b, c, k, w ∈ C(R+), a, b, c, k, w ∈ L1(R+) and w(u) is nonde-
creasing in u, u ≤ w(u). If

M(t0) = W−1
[
W (c) +M

∫ ∞

t0

(a(s) + b(s) + c(s)

∫ s

t0

k(τ)dτ)ds
]
< ∞, (23)

where b1 = ∞ and c = M |y0|eαt0 , then all solutions of (2) approach zero as
t → ∞.
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Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (2),
respectively. Since the solution x = 0 of (1) is EASV, it is EAS. By means of
Lemma 2.1, (21), and (22), we have

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)[e−αs(a(s)|y(s)|+ b(s)w(|y(s)|)

+c(s)

∫ s

t0

k(τ)w(|y(τ)|)dτ)]ds.

Since w is nondecreasing, we have

|y(t)| ≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−αt(a(s)|y(s)|eαs + b(s)w(|y(s)|eαs)ds

+

∫ t

t0

Me−αtc(s)

∫ s

t0

k(τ)w(|y(τ)|eατ )dτds.

Set u(t) = |y(t)|eαt. Then, it follows from Corollary 2.8 and (23) that

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(a(s) + b(s) + c(s)

∫ s

t0

k(τ)dτ)ds
]

≤ e−αtM(t0), t ≥ t0,

where c = M |y0|eαt0 . From the above inequality, we obtain the desired result.
�

Remark 3.4. Letting w(u) = u, b(t) = c(t) = 0 in Theorem 3.4, we obtain the
similar result as that of Corolary 3.8 in [4].
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