• 제목/요약/키워드: functional perturbed differential system

검색결과 19건 처리시간 0.029초

LIPSCHITZ AND ASYMPTOTIC STABILITY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Choi, Sang Il;Goo, Yoon Hoe
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제22권1호
    • /
    • pp.1-11
    • /
    • 2015
  • The present paper is concerned with the notions of Lipschitz and asymptotic for perturbed functional differential system knowing the corresponding stability of functional differential system. We investigate Lipschitz and asymptotic stability for perturbed functional differential systems. The main tool used is integral inequalities of the Bihari-type, and all that sort of things.

BOUNDEDNESS IN FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Goo, Yoon Hoe
    • 충청수학회지
    • /
    • 제29권2호
    • /
    • pp.347-359
    • /
    • 2016
  • In this paper, we show that the solutions to perturbed functional differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$$, have a bounded properties. To show the bounded properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$ and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of $t_{\infty}$-similarity.

BOUNDEDNESS IN FUNCTIONAL PERTURBED DIFFERENTIAL SYSTEMS

  • Im, Dong Man;Goo, Yoon Hoe
    • 충청수학회지
    • /
    • 제28권4호
    • /
    • pp.499-511
    • /
    • 2015
  • This paper shows that the solutions to the perturbed dierential system $$y^{\prime}=f(t,y)+{\int}_{t_o}^{t}g(s,y(s))ds+h(t,y(t),Ty(t))$$ have bounded property. To show this property, we impose conditions on the perturbed part ${\int}^{t}_{t_o}g(s,y(s))ds+h(t,y(t),Ty(t))$ and on the fundamental matrix of the unperturbed system y' = f(t, y).

ASYMPTOTIC PROPERTY FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Im, Dong Man;Goo, Yoon Hoe
    • 충청수학회지
    • /
    • 제29권1호
    • /
    • pp.1-11
    • /
    • 2016
  • This paper shows that the solutions to nonlinear perturbed functional differential system $$y^{\prime}=f(t,y)+{\int}^t_{t_0}g(s,y(s),Ty(s))ds+h(t,y(t))$$ have the asymptotic property by imposing conditions on the perturbed part ${\int}^t_{t_0}g(s,y(s),Ty(s))ds,h(t,y(t))$ and on the fundamental matrix of the unperturbed system y' = f(t, y).