• Title/Summary/Keyword: functional difference equation

Search Result 41, Processing Time 0.018 seconds

STABILITY OF THE RECIPROCAL DIFFERENCE AND ADJOINT FUNCTIONAL EQUATIONS IN THREE VARIABLES

  • Kim, Gwang Hui;Lee, Young Whan
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.311-322
    • /
    • 2010
  • In this paper, we prove stabilities of the reciprocal difference functional equation $$r(\frac{x+y+z}{3})-r(x+y+z)=\frac{2r(x)r(y)r(z)}{r(x)r(y)+r(y)r(z)+r(z)r(x)}$$ and the reciprocal adjoint functional equation $$r(\frac{x+y+z}{3})+r(x+y+z)=\frac{4r(x)r(y)r(z)}{r(x)r(y)+r(y)r(z)+r(z)r(x)}$$ with three variables. Stabilities of the reciprocal difference functional equation and the reciprocal adjoint functional equation in two variables was proved by K. Ravi, J. M. Rassias and B. V. Senthil Kumar. We extend their results to three variables in similar types.

STABILITY OF THE RECIPROCAL DIFFERENCE AND ADJOINT FUNCTIONAL EQUATIONS IN m-VARIABLES

  • Lee, Young Whan;Kim, Gwang Hui
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.731-739
    • /
    • 2010
  • In this paper, we prove stability of the reciprocal difference functional equation $$r\(\frac{{\sum}_{i=1}^{m}x_i}{m}\)-r\(\sum_{i=1}^{m}x_i\)=\frac{(m-1){\prod}_{i=1}^{m}r(x_i)}{{\sum}_{i=1}^{m}{\prod}_{k{\neq}i,1{\leq}k{\leq}m}r(x_k)$$ and the reciprocal adjoint functional equation $$r\(\frac{{\sum}_{i=1}^{m}x_i}{m}\)+r\(\sum_{i=1}^{m}x_i\)=\frac{(m+1){\prod}_{i=1}^{m}r(x_i)}{{\sum}_{i=1}^{m}{\prod}_{k{\neq}i,1{\leq}k{\leq}m}r(x_k)$$ in m-variables. Stability of the reciprocal difference functional equation and the reciprocal adjoint functional equation in two variables were proved by K. Ravi, J. M. Rassias and B. V. Senthil Kumar [13]. We extend their result to m-variables in similar types.

BS-STABILITIES AND $\rho$-STABILITIES FOR FUNCTIONAL DIFFERENCE EQUATIONS WITH INFINITE DELAY

  • Choi, Sung Kyu;Goo, Yoon Hoe;Im, Dong Man;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.753-762
    • /
    • 2012
  • We study the BS-stability and the $\rho$-stability for functional difference equations with infinite delay as a discretization of Murakami and Yoshizawa's results [6] for functional differential equation with infinite delay.

STABILITY OF THE G-FUNCTIONAL EQUATION

  • Kim, Gwang-Hui
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.837-844
    • /
    • 2002
  • In this paper, we obtain the Hyers-Ulam Stability for the difference equations of the form f(x + 1) = $\Gamma$(x)f(x), which is the reciprocal functional equation of the double gamma function.

A GENERALIZED ADDITIVE-QUARTIC FUNCTIONAL EQUATION AND ITS STABILITY

  • HENGKRAWIT, CHARINTHIP;THANYACHAROEN, ANURK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1759-1776
    • /
    • 2015
  • We determine the general solution of the generalized additive-quartic functional equation f(x + 3y) + f(x - 3y) + f(x + 2y) + f(x - 2y) + 22f(x) - 13 [f(x + y) + f(x - y)] + 24f(y) - 12f(2y) = 0 without assuming any regularity conditions on the unknown function f : ${\mathbb{R}}{\rightarrow}{\mathbb{R}}$ and its stability is investigated.

STABILITY IN FUNCTIONAL DIFFERENCE EQUATIONS WITH APPLICATIONS TO INFINITE DELAY VOLTERRA DIFFERENCE EQUATIONS

  • Raffoul, Youssef N.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1921-1930
    • /
    • 2018
  • We consider a functional difference equation and use fixed point theory to obtain necessary and sufficient conditions for the asymptotic stability of its zero solution. At the end of the paper we apply our results to nonlinear Volterra infinite delay difference equations.

ON THE GENERAL SOLUTION OF A QUARTIC FUNCTIONAL EQUATION

  • Chung, Jukang-K.;Sahoo, Prasanna, K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.565-576
    • /
    • 2003
  • In this paper, we determine the general solution of the quartic equation f(x+2y)+f(x-2y)+6f(x) = 4[f(x+y)+f(x-y)+6f(y)] for all x, $y\;\in\;\mathbb{R}$ without assuming any regularity conditions on the unknown function f. The method used for solving this quartic functional equation is elementary but exploits an important result due to M. Hosszu [3]. The solution of this functional equation is also determined in certain commutative groups using two important results due to L. Szekelyhidi [5].