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STABILITY IN FUNCTIONAL DIFFERENCE EQUATIONS

WITH APPLICATIONS TO INFINITE DELAY VOLTERRA

DIFFERENCE EQUATIONS

Youssef N. Raffoul

Abstract. We consider a functional difference equation and use fixed
point theory to obtain necessary and sufficient conditions for the asymp-

totic stability of its zero solution. At the end of the paper we apply our

results to nonlinear Volterra infinite delay difference equations.

1. Introduction

It is well known that when studying stability of solutions, Lyapunov func-
tions or functionals are the way to go. However, the stability results are as
good as the Lyapunov functional that is being constructed, see [6]. Moreover,
in most cases, Lyapunov functional will require severe conditions (see Theorem
1 below) on the terms in the equations in order for it to be decreasing along
the solutions. For more on recent results regarding stability in difference equa-
tions we refer the reader to [1], [2], [3], [4], [5], [9] and [10]. For recent results
on Volterra integro-differential equations, we refer the reader to [7–9] and the
references therein.

Let R = (−∞,∞), Z+ = [0,∞) and Z− = (−∞,−1], respectively. To
motivate the reader, we consider the delay difference equation

(1.1) x(t+ 1) = a(t)x(t) + b(t)x(t− g(t)),

where a, b, g : Z+ → R, and t− g(t) ∈ Z.

Theorem 1. Suppose

4g(t) ≤ 0, g(t) > 0 for all t ∈ Z+ and t− g(t)→∞ as t→∞.
Also, suppose there is a δ > 0 such that

(1.2) |a(t)|+ δ < 1,

and

(1.3) |b(t)| ≤ δ.
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Then the zero solution of (1.1) is asymptotically stable.

Proof. Define the Lyapunov functional V (t, x) by

V (t, x) = |x(t)|+ δ

t−1∑
s=t−g(t)

|x(s)|.

Then along solutions of (1.1) we have

4V = |x(t+ 1)| − |x(t)|+ δ

t∑
s=t+1−g(t+1)

|x(s)| − δ
t−1∑

s=t−g(t)

|x(s)|

≤ |a(t)||x(t)| − |x(t)|+ |b(t)|x(t− g(t))|

+ δ

t∑
s=t+1−g(t)

|x(s)| − δ
t−1∑

s=t−g(t)

|x(s)|

=
(
|a(t)|+ δ − 1

)
|x(t)|+

(
|b(t)| − δ

)
|x(t− g(t))|

≤
(
|a(t)|+ δ − 1

)
|x(t)|

≤ − γ|x(t)| for some positive constant γ.

By referring to [2], it follows from the above relation that the zero solution of
(1.1) is asymptotically stable. �

Remark 1. One of the difficulties that are associated with the above method is
the construction of a suitable Lyapunov functional. Moreover, conditions (1.2)
and (1.3) in Theorem 1 imply that

|a(t)|+ |b(t)| < 1 for all t ∈ Z.

In this paper we concentrate on the delay functional difference equation

(1.4) x(t+ 1) = a(t)x(t) + g(t, xt),

where a : Z+ → R, and g : Z+×C is continuous with C being the Banach space
of bounded functions φ : Z− → R with the supremum norm

||φ|| = sup
t∈Z−
{|φ(t)|} <∞.

If xt ∈ C, then xt(s) = x(t+ s) for s ∈ Z−.
We note that when the function g(t, φ) in not a linear function, then the

search for a suitable Lyapunov function or functional becomes extremely diffi-
cult, without severe restrictions, see Theorem 1 or [6].
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2. Stability

In this section, we use fixed point theory to obtain necessary and sufficient
conditions for the asymptotic stability of the zero solution of (1.4). Throughout
this paper we assume g(t, 0) = 0 so that x = 0 is a solution of (1.4). For every
positive β > 0, we define the set

C(β) = {φ ∈ C : ||φ|| ≤ β}.

Given a function ψ : Z → Z, we define ||ψ||[s,t] = sup{|ψ(u)| : s ≤ u ≤ t}.
Moreover, for D > 0 a sequence x : (−∞, D] → R is called a solution of (1.4)
through (t0, φ) ∈ Z+ × C if xt0 = φ and x satisfies (1.4) on [t0, D]. Due to the
importance of the next result, we summarize it in the following lemma.

Lemma 1. Suppose that a(t) 6= 0 for all t ∈ Z+. Then x(t) is a solution of
equation (1.4) if and only if

x(t) = φ(t0)

t−1∏
s=t0

a(s) +

t−1∑
s=t0

t−1∏
u=s+1

a(u) g(s, xs) for t ≥ t0.(2.1)

The proof of Lemma 1 follows easily from the variation of parameters formula
and hence we omit it.

In preparation for our next theorem we let L > 0 be a constant, δ0 ≥ 0 and
t0 ≥ 0. Let φ ∈ C(δ0) be fixed and set

S =
{
x : Z→ R : xt0 = φ, xt ∈ C(L) for t ≥ t0, x(t)→ 0 as t→∞

}
.

Then, S is a complete metric space with metric

ρ(x, y) = sup
t≥t0
|x(t)− y(t)|.

Define the mapping P : S → S by(
Px)(t) = φ(t) if t ≤ t0

and (
Px
)
(t) = φ(t0)

t−1∏
s=t0

a(s) +
t−1∑
s=t0

t−1∏
u=s+1

a(u) g(s, xs) for t ≥ t0.

It is clear that for ϕ ∈ S, Pϕ is continuous.

Theorem 2. Assume the existence of positive constants α,L, and a sequence
b : Z+ → [0,∞) such that the following conditions hold:

(i) a(t) 6= 0 for all t ∈ Z+.

(ii)

t−1∑
s=0

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣b(s) ≤ α < 1 for all t ∈ Z+.

(iii) |g(t, φ)− g(t, ψ)| ≤ b(t)||φ− ψ|| for all φ, ψ ∈ C(L).
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(iv) For each ε > 0 and t1 ≥ 0, there exists a t2 > t1 such that for t >
t2, xt ∈ C(L) imply

|g(t, xt)| ≤ b(t)
(
ε+ ||x||[t1,t−1]

)
.

Then the zero solution of (1.4) is asymptotically stable if and only if

(v)
∣∣∣ t−1∏
s=0

a(s)
∣∣∣→ 0 as t→∞.

Proof. Suppose (v) hold and let K = sup
t≥t0

∣∣∣ t−1∏
s=t0

a(s)
∣∣∣ for t0 ∈ Z+. Then K > 0

due to (i). Choose δ0 > 0 such that δ0K + αL ≤ L. Then for x ∈ S and for
fixed φ ∈ C(δ0) we have

|
(
Px
)
(t)| ≤ |φ(t0)|

∣∣∣ t−1∏
s=t0

a(s)
∣∣∣+

t−1∑
s=t0

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣b(s)||xs||

≤ δ0K + αL ≤ L for t ≥ t0.

Hence,
(
Px
)
∈ C(L). Next we show that

(
Px
)
(t)→ 0 as t→∞. Let x ∈ S. As

a consequence of x(t) → 0 as t → ∞, there exists t1 > t0 such that |x(t)| < ε
for all t ≥ t1. Moreover, since |x(t)| ≤ L for all t ∈ Z, by (iv) there is a t2 > t1
such that for t > t2 we have

|g(t, xt)| ≤ b(t)
(
ε+ ||x||[t1,t−1]

)
.

Thus, for t ≥ t2, we have∣∣∣ t−1∑
s=t0

t−1∏
u=s+1

a(u) g(s, xs)
∣∣∣ ≤ t2−1∑

s=t0

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣ |g(s, xs)|

+

t−1∑
s=t2

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣ |g(s, xs)|

≤
t2−1∑
s=t0

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣ ||xs||

+

t−1∑
s=t2

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣ b(s)(ε+ ||x||[t1,s−1]

)

≤
t2−1∑
s=t0

∣∣∣ t2−1∏
u=s+1

a(u)
∣∣∣∣∣∣ t−1∏
u=t2

a(u)
∣∣∣ ||xs||+ 2αε

≤ αL
∣∣∣ t−1∏
u=t2

a(u)
∣∣∣+ 2αε.
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By (v), there exists t3 > t2 such that

δ0

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣+ L

∣∣∣ t3−1∏
u=t2

a(u)
∣∣∣ < ε.

Thus, for t ≥ t3, we have

|
(
Px
)
(t)| ≤ δ0

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣+ αL

∣∣∣ t−1∏
u=t2

a(u)
∣∣∣+ 2αε < 3ε.

Hence,
(
Px
)
(t) → 0 as t → ∞. Left to show that

(
Pϕ
)
(t) is a contraction

under the maximum norm. Let ζ, η ∈ S. Then∣∣∣(Pζ)(t)− (Pη)(t)
∣∣∣ ≤ t−1∑

s=t0

∣∣ t−1∏
u=s+1

a(u)
∣∣ |g(s, ζs)− g(s, ηs)|

≤
t−1∑
s=t0

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣b(s) |ζs − ηs|

≤ αρ(ζ, η).

Or,

ρ(Pζ, Pη) ≤ αρ(ζ, η).

Thus, by the contraction mapping principle P has a unique fixed point in S
which solves (1.4) with φ ∈ C(δ0) and x(t) = x(t, t0, φ)→ 0 as t→∞. We are
left with showing that the zero solution of (1.4) is stable. Let ε > 0, ε < L be
given and choose 0 < δ < ε so that δK + αε < ε. We claim that |x(t)| < ε for
all t ≥ t0. Notice that by the choice of δ we have |x(t0)| < ε. Let t∗ ≥ t0 + 1 be
such that |x(t∗)| ≥ ε and |x(s)| < ε for t0 ≤ s ≤ t∗ − 1. If x(t) = x(t, t0, φ) is a
solution for (1.4) with ||φ|| < δ, then

|x(t∗)| ≤ δ
∣∣∣ t∗−1∏
s=t0

a(s)
∣∣∣+

t∗−1∑
s=t0

∣∣∣ t∗−1∏
u=s+1

a(u)
∣∣∣b(s)||xs||

≤ δK + αε < ε,

which contradicts the definition of t∗. Thus |x(t)| < ε for all t ≥ t0 and hence
the zero solution of (1.4) is asymptotically stable.

Conversely, suppose (v) does not hold. Then by (i) there exists a sequence
{tn} such that for positive constant q,(∣∣∣ tn−1∏

u=0

a(u)
∣∣∣)−1 = q for n = 1, 2, 3, . . . .

Now by (ii) we have that

tn−1∑
s=0

∣∣∣ tn−1∏
u=s+1

a(u)
∣∣∣b(s) ≤ α,
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from which we get that(∣∣ tn−1∏
u=0

a(u)
∣∣)−1 tn−1∑

s=0

∣∣∣ tn−1∏
u=s+1

a(u)
∣∣∣b(s) ≤ α(∣∣∣ tn−1∏

u=0

a(u)
∣∣∣)−1.

This simplifies to
tn−1∑
s=0

(∣∣∣ s∏
u=0

a(u)
∣∣∣)−1b(s) ≤ αq.

Thus the sequence

{
tn−1∑
s=0

(∣∣∣ s∏
u=0

a(u)
∣∣∣)−1b(s)} is bounded and hence there is

a convergent subsequence. Thus, for the sake of keeping a simple notation we
may assume that

lim
n→∞

tn−1∑
s=0

(∣∣∣ s∏
u=0

a(u)
∣∣∣)−1b(s) = ω

for some positive constant ω. Next we may choose a positive integer ñ large
enough so that

tn−1∑
s=tñ

(∣∣∣ s∏
u=0

a(u)
∣∣∣)−1b(s) < 1− α

2K2

for all n ≥ ñ.
Consider the solution x(t, tñ, φ) with φ(s) = δ0 for s ≤ ñ. Then, |x(t)| ≤ L

for all n ≥ ñ and

|x(t)| ≤ δ0
∣∣ t−1∏
s=tñ

a(s)
∣∣+

t−1∑
s=tñ

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣b(s)||xs||

≤ δ0K + α||xt||.
This implies

|x(t)| ≤ δ0K

1− α
for all t ≥ tñ.

On the other hand, for n ≥ ñ, we also have

|x(t)| ≥ δ0
∣∣∣ tn−1∏
s=tñ

a(s)
∣∣∣− t−1∑

s=tñ

∣∣∣ tn−1∏
u=s+1

a(u)
∣∣∣b(s)||xs||

≥ δ0
∣∣∣ tn−1∏
s=tñ

a(s)
∣∣∣− δ0K

1− α

∣∣∣ tn−1∏
u=0

a(u)
∣∣∣ t−1∑
s=tñ

∣∣∣( s∏
u=0

a(u)
)−1∣∣∣b(s)

= δ0

∣∣∣ tn−1∏
s=tñ

a(s)| − δ0K

1− α

∣∣∣ tñ−1∏
u=0

a(s)|
tn−1∏
u=tñ

a(s)
∣∣∣ t−1∑
s=tñ

∣∣∣( s∏
u=0

a(u)
)−1∣∣∣b(s)

≥
∣∣∣ tn−1∏
s=tñ

a(s)
∣∣∣(δ0 − δ0K

1− α
K

t−1∑
s=tñ

∣∣∣( s∏
u=0

a(u)
)−1∣∣∣b(s))



FUNCTIONAL DIFFERENCE EQUATIONS 1927

≥
∣∣∣ tn−1∏
s=tñ

a(s)
∣∣∣(δ0 − δ0K

1− α
K

1− α
2K2

) =
δ0
2

∣∣∣ tn−1∏
s=tñ

a(s)
∣∣∣

=
δ0
2

∣∣∣ tn−1∏
u=0

a(s)
∣∣∣(∣∣∣ tñ−1∏

u=0

a(s)
∣∣∣)−1 → δ0

2
q/q 6= 0 as n→∞.

Hence, condition (v) is necessary. This completes the proof. �

3. Infinite delay Volterra equations

In this section we apply the results of the previous section to nonlinear Volterra
infinite delay equations of the form

(3.1) x(t+ 1) = a(t)x(t) +

t−1∑
s=−∞

G(t, s, x(s)),

where a : Z+ → R and G : Ω × R → R, Ω = {(t, s) ∈ Z2 : t ≥ s} and G
is continuous in x. We prove the following theorem which gives necessary and
sufficient conditions for the stability of the zero solution of (3.1).

Theorem 3. Assume the existence of positive constants α,L, and a sequence
p : Ω→ R+ such that the following conditions hold:

(I) a(t) 6= 0 for all t ∈ Z+,

(II) sup
t∈Z+

t−1∑
s=0

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣ s−1∑
τ=0

p(s, τ) ≤ α < 1 for all t ∈ Z+,

(III) If |x|, |y| ≤ L, then

|G(t, s, x)−G(t, s, y)| ≤ p(t, s)|x− y|

and G(t, s, 0) = 0 for all (t, s) ∈ Ω,
(IV) For each ε > 0 and t1 ≥ 0, there exists a t2 > t1 such that for t ≥ t2,

implies
t1−1∑
s=−∞

p(t, s) ≤ ε
t−1∑

s=−∞
p(t, s).

Then the zero solution of (3.1) is asymptotically stable if and only if

(V)
∣∣∣ t−1∏
s=0

a(s)
∣∣∣→ 0 as t→∞.

Proof. We only need to verify that (iii) and (iv) of Theorem 2 hold. First we
remark that due to condition (iii) we have that |G(t, s, x)| ≤ p(t, s)L. Equation
(3.1) can be put in the form of Equation (1.4) by letting

g(t, φ) =

−1∑
s=−∞

G(t, t+ s, φ(s)).
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To verify (iii) we let b(t) =
∑t−1
s=−∞ p(t, s) and then for any functions φ, ϕ ∈

C(L), we have

|g(t, φ)− g(t, ϕ)| ≤
∣∣∣ −1∑
s=−∞

G(t, t+ s, φ(s))−
−1∑

s=−∞
G(t, t+ s, ϕ(s))

∣∣∣
≤

−1∑
s=−∞

p(t, t+ s) ||φ− ϕ||

= b(t)||φ− ϕ||.

Next we verify (iv). Let ε > 0 and t1 ≥ 0 be given. By (IV) there exists a
t2 > t1 such that

L

t1−1∑
s=−∞

p(t, s) < ε

t−1∑
s=−∞

p(t, s) for all t > t2.

Let xt ∈ C(L) and for t > t2 we have

|g(t, xt)| ≤
t1−1∑
s=−∞

∣∣G(t, s, x(s))
∣∣+

t−1∑
s=t1

∣∣G(t, s, x(s))
∣∣

≤
t1−1∑
s=−∞

Lp(t, s) +

t−1∑
s=t1

p(t, s)|x(s)|

≤ ε
t−1∑

s=−∞
p(t, s) +

t−1∑
s=t1

p(t, s)||x||[t1,t−1]

≤ b(t)
(
ε+ ||x||[t1,t−1]

)
.

This implies that (iv) is satisfied, and hence by Theorem 2, the zero solution
of (3.1) is asymptotically stable if and only if (v) holds. �

We end the paper with the following example.

Example 1. Consider the difference equation

(3.2) x(t+ 1) =
1

2t
x(t) +

t−1∑
s=−∞

2s−tx(s), n ≥ 0.

In this example we take t0 = 0. We observe that a(t) = 1
2t , and G(t, s, x) =

2s−tx(s). We make sure all the conditions of Theorem 3 are satisfied. Thus,

t−1∏
s=0

1

2s
→ 0 as t→∞,
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and hence condition (V) is satisfied. It is clear that p(t, s) = 2s−t. Next we
make sure condition (II) is satisfied.

sup
t∈Z+

t−1∑
s=0

∣∣∣ t−1∏
u=s+1

a(u)
∣∣∣ s−1∑
τ=0

p(s, τ) = sup
t∈Z+

t−1∑
s=0

∣∣∣ t−1∏
u=s+1

2−u
∣∣∣ s−1∑
τ=0

2s−τ

≤ sup
t∈Z+

t−1∑
s=0

∣∣∣ t−1∏
u=s+1

2−u(1− 2−s)

≤ sup
t∈Z+

t−1∑
s=0

21−t(1− 2−s)
∣∣∣

≤ 21−t[−21−t + 2 +
41−t

3
− 4/3]

≤ 2/3 for all t ∈ Z+.

Hence (II) is satisfied. Left to show (IV) is satisfied. Let t1 ≥ 0 be given. Then

t1−1∑
s=−∞

p(t, s) =

t1−1∑
s=−∞

2−t+s

= 2−t[2t1 − 2−∞]

≤ 2t−t2

= 2−t2
t−1∑

s=−∞
2−t+s

≤ ε
t−1∑

s=−∞
p(t, s), t ≥ t2 ≥ t1.

Thus all the conditions of Theorem 2 are satisfied and the zero solution of (3.2)
asymptotically stable.
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