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STABILITY IN FUNCTIONAL DIFFERENCE EQUATIONS

USING FIXED POINT THEORY

Youssef N. Raffoul

Abstract. We consider a functional difference equation and use fixed
point theory to analyze the stability of its zero solution. In particular,
our study focuses on the nonlinear delay functional difference equation

x(t+ 1) = a(t)g(x(t − r)).

1. Introduction

When dealing with nonlinear functional differential or difference equations, it
is popular to use the concept of Lyapunov functionals to qualitatively analyze
their behavior. However, the use of Lyapunov functionals require ingenuity
in the construction of such a function and moreover, the end results heavily
depend on the constructed Lyapunov functional. For the purpose of illustration
we consider the nonlinear delay difference equation

(1.1) x(t + 1) = a(t)g(x(t)) + b(t)h(x(t − r)),

where the functions g and h are continuous. Define the Lyapunov functional
V by

V (t) = |x(t)| +
t−1
∑

s=t−r

|b(s+ r)||h(x(s))|.

We assume that there are positive constants γ1 and γ2 such that |g(x)| ≤ γ1|x|
and |h(x)| ≤ γ2|x|, so that

γ1|a(t)|+ γ2|b(t)| − 1 ≤ −β, β > 0.

Then along solutions of (1.2) we have

△V = |x(t + 1)| − |x(t)|+ |b(t+ r)||h(x(t))| − |b(t)||h(x(t − r))|
≤ |a(t)||g(x(t))| + |b(t)||h(x(t− r))| − |x(t)|

+ |b(t+ r)||h(x(t))| − |b(t)||h(x(t − r))|
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≤ (γ1|a(t)|+ γ2|b(t)| − 1)|x(t)| ≤ −β|x(t)|.

Now one might consult [8] and argue that the zero solution of (1.1) is asymp-
totically stable. For more on the use of Lyapunov functional we ask the reader
to consult with [1], [2], [3], [6], [12], [13], [15]. For more recent results on the
existence of periodic solutions in difference equations we refer the reader to [4],
[7], [5], [9], and [14]. We remark that it is difficult if not possible to construct
a suitable Lyapunov functional for (1.2) to study it stability. That is due to
the absence of the term a(t) as in (1.1).

In this paper we limit our study to highly nonlinear delay difference equation,
typified by

(1.2) x(t + 1) = a(t)g(x(t − r)),

where a(t) : Z+ → R and r is a positive integer. More conditions on g are
forthcoming. In the paper of Raffoul [10], the author considered the linear
difference equation

(1.3) △x(t) = −a(t)x(t − r)

and used fixed point theory and obtained asymptotic and periodicity results
using fixed point theory. It is worth mentioning here that our equation (1.2)
has fundamental difference from the above mentioned equation due to the non-
linearity that the function g presents. Moreover, when inverting (1.2) in order
to construct a mapping that is suitable for fixed point theory one will have to
introduce a linear term which results in the addition term of x−g(x). Also, the
results of this paper offer the use of nonconventional metric in order to avoid
that the contraction constant not to depend on the Lipschitz constant K that
g will be required to satisfy. Recently, thee author used Lyapunov functional
and obtained conditions that guaranteed the exponential asymptotic stability
of the zero solution of (1.3). Also in the paper, conditions were given for the
instability of the zero solution of (1.3).

2. Stability

First we rewrite (1.2) and have it ready to for inversion so that fixed point
theory can be used. Rewrite (1.2) as

x(t+ 1) = a(t+ r)g(x(t)) −△t

t−1
∑

s=t−r

a(s+ r)g(x(s)),

where △t represents that the difference is with respect to t. We must create
a linear tern in x in order to be able to invert. Thus, we add and subtract
a(t+ r)x(t) and get,

(2.1) x(t+1) = a(t+r)x(t)−a(t+r)[x(t)−g(x(t))]−△t

t−1
∑

s=t−r

a(s+r)g(x(s)).
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For each t0 ≥ 0, the equation (2.1) requires initial function ψ : [t0 − r, t0] → R

in order to specify a solution x(t, t0, ψ). The computation are the same for any
t0 ≥ 0 and so we take t0 = 0. Thus, we say x(t) := x(t, 0, ψ) is a solution of
(2.1) if x(t) = ψ(t) on [−r, 0] and x(t) satisfies (2.1) for t ≥ 0. We begin with
the following lemma which we omit its proof.

Lemma 2.1. Suppose that a(t+ r) 6= 0 for all t ∈ Z
+. Then x(t) is a solution

of the equation (2.1) if and only if

(2.2)

x(t) = ψ(0)

t−1
∏

s=0

a(s+ r) −
t−1
∑

s=t−r

a(s+ r)g(x(s))

+

t−1
∏

u=0

a(u+ r)

−1
∑

s=−r

a(s+ r)g(ψ(s))

+
t−1
∑

s=0

(

a(s+ r)
t−1
∏

k=s+1

a(k + r)
s−1
∑

u=s−r

a(u+ r)g(x(u))
)

−
t−1
∑

s=0

(

t−1
∏

u=s+1

a(u+ r)
)

a(s+ r)[x(s) − g(x(s))], t ≥ 0.

Throughout this paper it is assumed that the function g is continuous, locally
Lipschitz with Lipschitz constant K and odd. On the other hand, we assume
that x − g(x) is nondecreasing and g(x) is increasing on an interval [0, L] for
some L > 0. Due to these assumptions, it is obvious that the functions g(x)
and x− g(x) are locally Lipschitz with the same Lipschitz constant K > 0.

Note that if 0 < L1 < L, then the conditions on g hold on [−L1, L1]. Also
note that if φ : [−r,∞) → R with φ0 = ψ, and if |φ(t)| ≤ L, then for t ≥ 0 we
have

|φ(t) − g(φ(t))| ≤ L− g(L),

since x−g(x) is odd and nondecreasing on [0, L].Here φ0 = ψ(s) for−r ≤ s ≤ 0.
The proof of Lemma 2.1 follows easily from the variation of parameters formula
followed by summation by parts.

Next we define what it means for a sequence x to be a solution of (1.1).
Let ψ(t) be a given bounded initial function such that ψ : [−r0, t0] → R.

It presents no difficulties to start solutions at any initial time t0. However, we
chose to start solutions at t0 = 0. With this in mind, we say x(t) := x(t, 0, ψ)
is a solution of (1.1) if x(t) = ψ(t) on [−τ, 0] and x(t) satisfies (1.1) for t ≥ 0.
For any bounded initial sequence ψ on [−r, 0] with |ψ(t)| ≤ L

S =
{

φ : [−r,∞) → R : φ0 = ψ, |φ(t)| ≤ L
}

.

For φ ∈ S, we define P : S → S by

(Pφ)(t) = ψ(t) if − r ≤ t ≤ 0
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and

(2.3)

(Pφ)(t) = ψ(0)

t−1
∏

s=0

a(s+ r)−
t−1
∑

s=t−r

a(s+ r)g(φ(s))

+

t−1
∏

u=0

a(u+ r)

−1
∑

s=−r

a(s+ r)g(ψ(s))

+

t−1
∑

s=0

(

a(s+ r)

t−1
∏

k=s+1

a(k + r)

s−1
∑

u=s−r

a(u+ r)g(φ(u))
)

−
t−1
∑

s=0

(

t−1
∏

u=s+1

a(u+ r)
)

a(s+ r)[φ(s) − g(φ(s))], t ≥ 0.

Let g be odd, increasing on [0, L], satisfy a Lipschitz condition, and let x−g(x)
be nondecreasing on [0, L]. Suppose that if L1 ∈ (0, L], then

|L1 − g(L1)|max
t≥0

t−1
∑

s=0

∣

∣

∣
(

t−1
∏

u=s+1

a(u+ r))a(s + r)
∣

∣

∣
+ g(L1)

t−1
∑

s=t−r

|a(s+ r)|(2.4)

+ g(L1)max
t≥0

t−1
∑

s=0

∣

∣

∣
(a(s+ r)

t−1
∏

k=s+1

a(k + r)
∣

∣

∣

s−1
∑

u=s−r

|a(u+ r)| < L1.

For the purpose of the next theorem, we note that since g(x) is Lipschitz with
Lipschitz constant K and g(0) = 0, then |g(x)| ≤ K|x|.
Theorem 2.2. Let g be odd, increasing on [0, L], satisfy a Lipschitz condition,

and let x − g(x) be nondecreasing on [0, L]. Suppose that a(t + r) 6= 0 for all

t ∈ Z
+. If (2.4) hold, then every solution x(t, 0, ψ) of (2.1) with small initial

function ψ(t), is bounded provided P is a contraction.

Proof. Let φ ∈ S. Then, by (2.4), there exists an α ∈ (0, 1) such that for t ≥ 0
then

|(Pφ)(t)|(2.5)

≤ ||ψ||
∣

∣

∣

t−1
∏

s=0

a(s+ r)
∣

∣

∣
+
∣

∣

∣

t−1
∏

u=0

a(u+ r)
∣

∣

∣
||g(ψ(s)||

−1
∑

s=−r

|a(s+ r)|

+ |L− g(L)|max
t≥0

t−1
∑

s=0

∣

∣

∣
(

t−1
∏

u=s+1

a(u+ r))a(s + r)
∣

∣

∣
+ g(L)

t−1
∑

s=t−r

|a(s+ r)|

+ g(L)max
t≥0

t−1
∑

s=0

∣

∣

∣
(a(s+ r)

t−1
∏

k=s+1

a(k + r)
∣

∣

∣

s−1
∑

u=s−r

|a(u+ r)|

≤ ||ψ||
t−1
∏

s=0

|a(s+ r)|+
∣

∣

∣

t−1
∏

u=0

a(u+ r)
∣

∣

∣
||g(ψ(s)||

−1
∑

s=−r

|a(s+ r)| + αL
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≤
t−1
∏

s=0

|a(s+ r)|
[

||ψ||+K||ψ||
]

−1
∑

s=−r

|a(s+ r)| + αL.

If we choose the initial function ψ small enough so that we have

t−1
∏

s=0

|a(s+ r)|
[

||ψ||+K||ψ||
]

−1
∑

s=−r

|a(s+ r)| < (1− α)L,

then we will have
|(Pφ)(t)| ≤ (1− α)L + αL = L.

Thus, P : S → S. This shows that any solution x(t, 0, ψ) of (2.1) that is in S is
bounded. Next we show that P defines a contraction map. Using the regular
maximum norm, will require that the contraction constant to depend on the
Lipschitz constant K. Instead we use the weighted norm | · |K where for φ ∈ S,
we have

|φ|K = max
t≥0

| 1

dK

t−1
∏

s=0

|a(s+ r)φ| for d > 0.
�

Proposition 2.3. Let g be odd, increasing on [0, L], satisfy a Lipschitz con-

dition, and let x − g(x) be nondecreasing on [0, L]. Suppose that a(t + r) 6= 0
for all t ∈ Z

+ with |a(t + r)| ≤ 1
2 . Then P is a contraction with contraction

constant d > 3.

Proof. Let φ, ϕ ∈ S. Then for t ≥ 0, we have

|(Pφ)− (Pϕ)|K

(2.6)

≤
t−1
∑

s=t−r

|a(s+ r)||g(φ(s)) − g(ϕ(s))|| 1

dK

t−1
∏

u=0

|a(u+ r)|

+

t−1
∑

s=0

|a(s+ r)

t−1
∏

k=s+1

a(k + r)|
s−1
∑

u=s−r

|a(u+ r)||g(φ(s)) − g(ϕ(s))|| 1

dK

t−1
∏

u=0

|a(u+ r)|

+

t−1
∑

s=0

(

t−1
∏

u=s+1

|a(u+ r))||a(s + r)||φ(s) − g(φ(s))− (ϕ(s) − g(ϕ(s)))|| 1

dK

t−1
∏

u=0

|a(u+ r)|.

Our aim is to simplify (2.6). First we remind the reader that due to the con-
ditions on g(x) and x− g(x), both functions share the same Lipschitz constant
K. Moreover, since |a(t + r)| ≤ 1

2 , we have |a(t + r)| ≤ 1 − |a(t + r)| and
|a(t+ r)|2 ≤ 1− |a(t+ r)|2. Next, we consider the first term of (2.6)

t−1
∑

s=t−r

|a(s+ r)||g(φ(s)) − g(ϕ(s)|| 1

dK

t−1
∏

u=0

|a(u+ r)|(2.7)

≤ max
t≥0

K

dK

t−1
∑

s=t−r

|a(s+ r)||φ(s) − ϕ(s)|
s−1
∏

u=0

|a(u+ r)|
t−1
∏

u=s

|a(u+ r)|
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≤ 1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=t−r

|a(s+ r)|
t−1
∏

u=s

|a(u+ r)|

≤ 1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=t−r

|a(s+ r)|
t−1
∏

u=s+1

|a(u+ r)|

≤ 1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=t−r

(1 − |a(s+ r)|)
t−1
∏

u=s+1

|a(u+ r)|

=
1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=t−r

△s

(

t−1
∏

u=s

|a(u+ r)|
)

=
1

d
|φ− ϕ|K max

t≥0
(1−

t−1
∏

u=t−r

|a(u+ r)|)

≤ 1

d
|φ− ϕ|K .

Next we turn our attention to the second term of (2.6).

t−1
∑

s=0

|a(s+ r)

t−1
∏

k=s+1

a(k + r)|(2.8)

·
s−1
∑

u=s−r

|a(u+ r)||g(φ(s)) − g(ϕ(s))|| 1

dK

t−1
∏

l=0

|a(l + r)|

≤ 1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=0

|a(s+ r)

t−1
∏

k=s+1

a(k + r)|

·
s−1
∑

u=s−r

|a(u+ r)||g(φ(s)) − g(ϕ(s))|| 1

dK

t−1
∏

l=u+1

|a(l + r)|

≤ 1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=0

|a(s+ r)|
t−1
∏

k=s+1

a(k + r)|

s−1
∑

u=s−r

(1− |a(u+ r)|)
t−1
∏

l=u+1

|a(l + r)|

=
1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=0

|a(s+ r)|
t−1
∏

k=s+1

a(k + r)|
s−1
∑

u=s−r

△s

(

t−1
∏

l=u

|a(l + r)|
)

≤ 1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=0

|a(s+ r)|
t−1
∏

k=s+1

a(k + r)|
t−1
∏

l=s

|a(l + r)|
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=
1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=0

|a(s+ r)|2(
t−1
∏

k=s+1

|a(k + r)|)2

≤ 1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=0

|(1− |a(s+ r)|2)(
t−1
∏

k=s+1

|a(k + r)|)2

≤ 1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=0

|△s(

t−1
∏

k=s

|a(k + r)|)2 ≤ 1

d
|φ− ϕ|K .

Now we deal with the last term of (2.6).

t−1
∑

s=0

(

t−1
∏

u=s+1

|a(u+ r))||a(s + r)||φ(s) − g(φ(s)) − (ϕ(s) − g(ϕ(s)))|| 1

dK

t−1
∏

u=0

|a(u + r)|

(2.9)

≤ 1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=0

t−1
∏

u=s+1

|a(u+ r)||a(s + r)|
t−1
∏

u=s

|a(u+ r)|

≤ 1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=0

|a(s+ r)|2(
t−1
∏

u=s+1

|a(u+ r)|)2

≤ 1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=0

(1− |a(s+ r)|2)(
t−1
∏

u=s+1

|a(u+ r)|)2

=
1

d
|φ− ϕ|K max

t≥0

t−1
∑

s=0

△s(

t−1
∏

u=s

|a(u + r)|)2

=
1

d
|φ− ϕ|K(1 − (

t−1
∏

u=0

|a(u+ r)|)2)

≤ 1

d
|φ− ϕ|K .

A substitution of (2.7), (2.8) and (2.9) into (2.6) yield to

|(Pφ)− (Pϕ)|K ≤ (
1

d
+

1

d
+

1

d
)|φ− ϕ|K ,

which makes P a contraction for d > 3. Let (X , | · |) be the Banach space of
bounded sequences φ : [0,∞) → R. As S is a subset of the Banach space X
and S is closed and bounded so S is complete. Thus, P : S → S has a unique
fixed point. This completes the proof. �

We have the following corollary.

Corollary 2.4. Let g be odd, increasing on [0, L], satisfy a Lipschitz condition,

and let x − g(x) be nondecreasing on [0, L]. Suppose that a(t + r) 6= 0 for all

t ∈ Z
+. If (2.4) hold with |a(t + r)| ≤ 1

2 , then the unique solution x(t, 0, ψ)
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of (2.1) with small initial function ψ(t), is is bounded and its zero solution is

stable.

Proof. Let P be defined by (2.3). Then by Theorem 2.2, P maps S into
S. Moreover, by Proposition 2.4 P is a contraction on S and hence the
unique solution of (2.1) is bounded by Theorem 2.2. Left to show the zero
solution is stable. Let L be given by (2.5) and set 0 < ǫ < L. Choose

δ = ǫ(1−α)

(1+K)
∏

t−1

s=0
|a(s+r)|

∑
−1

s=−r
|a(s+r)| . Then for |ψ| < δ, we have by (2.5) that

|(Pφ)(t)| ≤
t−1
∏

s=0

|a(s+ r)|
[

||ψ||+K||ψ||
]

−1
∑

s=−r

|a(s+ r)| + αL

≤ δ(1 +K)

t−1
∏

s=0

|a(s+ r)|
−1
∑

s=−r

|a(s+ r)| + αL

≤ δ(1 +K)

t−1
∏

s=0

|a(s+ r)|
−1
∑

s=−r

|a(s+ r)| + αǫ

≤ ǫ(1− α) + αǫ = ǫ.

Hence the zero solution is stable. This completes the proof. �

We mention here that the requirement |a(t+ s)| ≤ 1/2 was necessitated by
the use of the norm | · |K . However, in proving that P is a contraction we did
not have to involve K in the contraction constant.

Example. Let a(t+ r) 6= 0 such that |a(t+ r)| ≤ 1
2 . Consider

(2.10) x(t+ 1) = −a(t)x3(t− r).

In view of (2.1) we have

x(t+ 1) = a(t+ r)x(t) − a(t+ r)[x(t) − x3(t− r)] +△t

t−1
∑

s=t−r

a(s+ r)x3(s).

Let f(x) = x − x3. Then f(x) is increasing on (0, 1√
3
) and has a maximum of

2
3
√
3
at x = 1√

3
. For any bounded initial sequence ψ on [−r, 0] with |ψ(t)| ≤ 1√

3
we set

S =
{

φ : [−r,∞) → R : φ0 = ψ, |φ(t)| ≤ 1√
3

}

.

For φ ∈ S, we define P : S → S by

(Pφ)(t) = ψ(t) if − r ≤ t ≤ 0

and

(Pφ)(t) = ψ(0)
t−1
∏

s=0

a(s+ r) +
t−1
∑

s=t−r

a(s+ r)φ3(s)
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−
t−1
∏

u=0

a(u+ r)

−1
∑

s=−r

a(s+ r)ψ3(s)

−
t−1
∑

s=0

(

a(s+ r)

t−1
∏

k=s+1

a(k + r)

s−1
∑

u=s−r

a(u+ r)φ3(u)
)

−
t−1
∑

s=0

(
t−1
∏

u=s+1

a(u+ r))a(s + r)[φ(s) − φ3(s)], t ≥ 0.

Let ψ be small enough so that

||ψ||
t−1
∏

s=0

|a(s+ r)| +
√
3

9

t−1
∑

s=t−r

|a(s+ r)|+ ||ψ||
t−1
∏

u=0

|a(u+ r)|
−1
∑

s=−r

|a(s+ r)|

+

√
3

9

t−1
∑

s=0

(

|a(s+ r)|
t−1
∏

k=s+1

|a(k + r)|
s−1
∑

u=s−r

|a(u + r)|
)

+
2

3
√
3

t−1
∑

s=0

(
t−1
∏

u=s+1

|a(u + r))||a(s + r)| ≤ 1√
3
.

Then

|(Pφ)(t)| ≤ 1√
3
.

Moreover, it is obvious that the Lipscihtz constant k = 1. Let d be a positive
constant such that d > 3. Then if we take

|φ|1 = max
t≥0

|1
d

t−1
∏

s=0

|a(s+ r)φ|,

we have P is contraction on S and hence all solutions of (2.10) are bounded
and its zero solution is stable.
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