
Bull. Korean Math. Soc. 52 (2015), No. 6, pp. 1759–1776
http://dx.doi.org/10.4134/BKMS.2015.52.6.1759

A GENERALIZED ADDITIVE-QUARTIC FUNCTIONAL

EQUATION AND ITS STABILITY

Charinthip Hengkrawit and Anurak Thanyacharoen

Abstract. We determine the general solution of the generalized additive-
quartic functional equation f(x + 3y) + f(x − 3y) + f(x + 2y) + f(x −

2y) + 22f(x) − 13 [f(x+ y) + f(x− y)] + 24f(y) − 12f(2y) = 0 without
assuming any regularity conditions on the unknown function f : R → R

and its stability is investigated.

1. Introduction

A function A : R → R is said to be additive [1], if A(x + y) = A(x) +
A(y) (x, y ∈ R). For n ∈ N, a function An : Rn → R that is additive in each of
its variable is called n-additive. If

An(x1, x2, . . . , xn) = An(xπ(1), xπ(2), . . . , xπ(n))

for every permutation {π(1), π(2), . . . , π(n)} of {1, 2, . . . , n} where n is a pos-
itive number, then a function An is called symmetric. Denote the diagonal
element An(x, x, . . . , x) by An(x) if An(x1, x2, . . . , xn) is n-additive symmetric
function and denote the resulting function obtained by putting x1 = x2 = · · · =
xℓ = x and xℓ+1 = xℓ+2 = · · · = xn = y in An(x1, x2, . . . , xn) by Aℓ,n−ℓ(x, y).
For f : R → R, the difference operator ∆h with h ∈ R is defined by

∆hf(x) = f(x+ h)− f(x).

Higher order differences are defined in the usual manner, namely,

∆0
hf(x) = f(x), ∆1

hf(x) = ∆hf(x), ∆n+1
h f(x) = ∆h ◦∆

n
hf(x) (n ∈ N, h ∈ R),

where ∆h ◦∆n
h denotes operator composition. The superposition of difference

operators is defined by

∆h1,...,hn
f = ∆h1

∆h2
· · ·∆hn

f, n ∈ N.(1.1)

For any given n ∈ N ∪ {0} , if f satisfies the functional equation

∆n+1
h f(x) = 0, x, h ∈ R,(1.2)
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then f is called a polynomial function of order n. In explicit form (1.2) can be
written as

n+1
∑

k=0

(−1)n+1−k

(

n+ 1

k

)

f(x+ kh) = 0.(1.3)

It is known (see [8]) that for functions defined over R the equation (1.3) is
equivalent to the Fréchet functional equation

∆h1,...,hn+1
f(x) = 0,(1.4)

where x, h1, . . . , hn+1 ∈ R.

The following theorem is needed in our proof (see [3, pp. 71–77]).

Theorem 1.1. The function f : R → R is a polynomial function of order n

if and only if there exist k-additive symmetric functions Ak : Rk → R (k =
0, 1, . . . , n) such that the equation

(1.5) f(x) =

n
∑

k=0

Ak(x) (x ∈ R) holds,

where Ak are the diagonalizations of Ak (k = 0, 1, . . . , n).

In 2003, Chung and Sahoo [2] considered the functional equation

(1.6) f(x+2y)+f(x−2y)+6f(x) = 4[f(x+y)+f(x−y)+6f(y)] (x, y ∈ R).

It is easy to see that the function f(x) = x4 is a solution of (1.6). The equation
(1.6) is called a quartic functional equation and every solution of (1.6) is called
a quartic function. Chung and Sahoo’s results are:

Theorem 1.2. If f : R → R satisfies the functional equation (1.6), then f

is a solution of the Fréchet functional equation ∆x1,x2,x3,x4,x5
f(x0) = 0 for all

x0, x1, x2, x3, x4, x5 ∈ R.

Theorem 1.3. The function f : R → R satisfies the functional equation (1.6)
if and only if f is of the form f(x) = A4(x), where A4(x) is the diagonal of

4-additive symmetric function A4 : R4 → R.

Next, in 2004, Sahoo [10] solved the functional equation

(1.7) f(x+ 2y) + f(x− 2y) + 6f(x) = 4 [f(x+ y) + f(x− y)] (x, y ∈ R)

by finding its general solution to be of the form f(x) = A0 +A1(x) +A2(x) +
A3(x), where An(x) is the diagonal of n-additive symmetric function An : Rn →
R (n = 1, 2, 3) and A0 is an arbitrary constant. In the next year, he generalized
(1.7) to

(1.8) f1(2x+ y) + f2(2x− y) = f3(x+ y) + f4(x− y) + f5(x),

and proved that the functions f1, f2, f3, f4, f5 : R → R satisfy the functional
equation (1.8) for all x, y ∈ R if and only if

f1(x) = A3(x) +A2(x) +A1(x) +A0 +B2(x) +B1(x) +B0,
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f2(x) = A3(x) +A2(x) +A1(x) +A0 −B2(x)−B1(x)−B0,

f3(x) = 2A3(x) +A2(x) +A1(x) +
1

2
A0 + C1(x) + C0

+ 2B2(x) +B1(x) +B0 +D0,

f4(x) = 2A3(x) +A2(x) +A1(x) +
1

2
A0 + C1(x) + C0

− 2B2(x)−B1(x) −B0 −D0,

f5(x) = 12A3(x) + 6A2(x) + 2A1(x) +A0 − 2C1(x) − 2C0,

where A0, B0, C0, D0 are arbitrary constants, An(x), Bn(x), Cn(x) are the di-
agonals of n-additive symmetric functions An, Bn, Cn : Rn → R (n = 1, 2, 3),
respectively.

In 2010, Gordji [4] obtained the functional equation

f(2x+ y) + f(2x− y) = 4 [f(x+ y) + f(x− y)]−
3

7
[f(2y)− 2f(y)]

+ 2f(2x)− 8f(x).(1.9)

He proved that the function f satisfies (1.9) if and only if there exist a unique
symmetric multiadditive function B : X × X × X × X → Y and a unique
additive function A : X → Y such that f(x) = B(x, x, x, x) + A(x) for all
x ∈ X.

In 2013, we (see [6]) considered the following functional equation

f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x)

= 13 [f(x+ y) + f(x− y)] + 168f(y)(1.10)

for all x, y ∈ R and we solved that the function f : R → R satisfies (1.10) if and
only if it is of the form f(x) = A4(x), where A4(x) is the diagonal of 4-additive
symmetric function A4 : R4 → R.

Next, Recognizing the identity

(x+ 3y)4 + (x− 3y)4 + (x+ 2y)4 + (x− 2y)4 + 22x4

− 13
[

(x+ y)4 + (x − y)4
]

+ 24y4 − 12(2y)4 = 0(1.11)

and

(x+ 3y) + (x− 3y) + (x+ 2y) + (x− 2y) + 22x

− 13 [(x+ y) + (x− y)] + 24y − 12(2y) = 0,(1.12)

which renders a solution f(x) = x4 + x to the functional equation

f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x)

− 13 [f(x+ y) + f(x− y)] + 24f(y)− 12f(2y) = 0.(1.13)

The aim of the present work is to find a general solution of the functional
equation (1.13) without assuming any regularity condition and its stability.
Our main result is:
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Theorem 1.4. The function f : R → R satisfies the functional equation (1.13)
for all x, y ∈ R if and only if it is of the form

f(x) = A4(x) +A(x) (x ∈ R),(1.14)

where An(x) is the diagonal of a n-additive symmetric function An : Rn → R

(n = 1, 4).

2. Preliminary result

The following auxiliary lemma is shown in [6, Lemma 2.1].

Lemma 2.1. If the function f : R → R satisfies the functional equation

f(x+ 4y)− 14f(x+ 2y) + 35f(x+ y)− 35f(x)

+ 14f(x− y)− f(x− 3y) = 0(2.1)

for all x, y ∈ R, then f is a solution of the Fréchet functional equation

∆x1,x2,x3,x4,x5,f(x0) = 0

for all x0, x1, x2, x3, x4, x5 ∈ R.

Theorem 2.2. If f : R → R satisfies the functional equation (1.13), then the

following assertions hold.

a) If f is an even function, then f is a quartic function.

b) If f is an odd function, then f is an additive function.

Proof. To prove a), letting x = y = 0 in (1.13), we have f(0) = 0. Replacing x

by x+ y in (1.13), we have

f(x+ 4y) + f(x− 2y) + f(x+ 3y) + f(x− y) + 22f(x+ y)

− 13 [f(x+ 2y) + f(x)] + 24f(y)− 12f(2y) = 0.(2.2)

Subtracting (1.13) from (2.2), we obtain

f(x+ 4y)− 14f(x+ 2y) + 35f(x+ y)− 35f(x) + 14f(x− y)− f(x− 3y) = 0.

By Lemma 2.1, we have

∆x1,...,x5
f(x0) = 0

for all x0, x1, x2, x3, x4, x5 ∈ R. Thus from Theorem 1.1 we have

f(x) = A4(x) +A3(x) +A2(x) +A1(x) +A0 for all x ∈ R,(2.3)

where An(x) is the diagonal of n-additive symmetric function An : Rn → R for
n = 1, . . . , 4 and A0 is an arbitrary constant. Since f(0) = 0, we have A0 ≡ 0
and f is even, then A3(x) and A1(x) must be vanish. Hence, from (2.3) we
have

f(x) = A4(x) +A2(x).(2.4)

Letting (2.4) into (1.13), we have

A4(x + 3y) +A2(x+ 3y) +A4(x− 3y) +A2(x − 3y)



A GENERALIZED ADDITIVE-QUARTIC FUNCTIONAL EQUATION 1763

+A4(x+ 2y) +A2(x+ 2y) +A4(x− 2y) +A2(x− 2y) + 22[A4(x) +A2(x)]

− 13[A4(x+ y) +A2(x+ y)]− 13[A4(x − y) +A2(x− y)] + 24[A4(y) +A2(y)]

− 12[A4(2y) +A2(2y)] = 0.

Thus, we obtain

A4(x + 3y) +A4(x− 3y) +A2(x+ 3y) +A2(x − 3y)

+A4(x+ 2y) +A4(x− 2y) +A2(x+ 2y) +A2(x− 2y) + 22[A4(x) +A2(x)]

− 13[A4(x+ y) +A4(x− y)]− 13[A2(x + y) +A2(x− y)] + 24[A4(y) +A2(y)]

− 12[A4(2y) +A2(2y)] = 0.

Noting that

A4(x+ y) +A4(x− y) = 2A4(x) + 12A2,2(x, y) + 2A4(y),

A2(x+ y) +A2(x− y) = 2A2(x) + 2A2(y),

A2,2(x, 3y) = 9A2,2(x, y), A2,2(x, 2y) = 4A2,2(x, y),

A4(3y) = 81A4(y), A2(3y) = 9A2(y), A4(2y) = 16A4(y), A2(2y) = 4A2(y),

then we get

2A4(x) + 12A2,2(x, 3y) + 2A4(3y) + 2A2(x) + 2A2(3y)

+ 2A4(x) + 12A2,2(x, 2y) + 2A4(2y) + 2A2(x) + 2A2(2y) + 22[A4(x) +A2(x)]

− 13[2A4(x)+12A2,2(x, y)+2A4(y)]−13[2A2(x)+2A2(y)] + 24[A4(y)+A2(y)]

− 12[A4(2y) +A2(2y)] = 0.

That is,

2A4(x) + 108A2,2(x, y) + 162A4(y) + 2A2(x) + 18A2(y)

+ 2A4(x) + 48A2,2(x, y) + 32A4(y) + 2A2(x) + 8A2(y) + 22[A4(x) + A2(x)]

− 13[2A4(x)+12A2,2(x, y)+2A4(y)]−13[2A2(x)+2A2(y)] + 24[A4(y)+A2(y)]

− 12[16A4(y) + 4A2(y)] = 0.

Thus, we obtain A2(y) = 0 and from (2.4) we have f(x) = A4(x) for all x ∈ R.

Hence f is a quartic function.
To prove b), letting x = y = 0 in (1.13), we have f(0) = 0. Replacing x by

x+ y in (1.13), we have

f(x+ 4y) + f(x− 2y) + f(x+ 3y) + f(x− y) + 22f(x+ y)

− 13 [f(x+ 2y) + f(x)] + 24f(y)− 12f(2y) = 0.(2.5)

Subtracting (1.13) from (2.5), we obtain

f(x+ 4y)− 14f(x+ 2y) + 35f(x+ y)− 35f(x) + 14f(x− y)− f(x− 3y) = 0.

By Lemma 2.1, we have
∆x1,...,x5

f(x0) = 0
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for all x0, x1, x2, x3, x4, x5 ∈ R. Thus from Theorem 1.1 we have

f(x) = A4(x) +A3(x) +A2(x) +A1(x) +A0 for all x ∈ R,(2.6)

where An(x) is the diagonal of n-additive symmetric function An : Rn → R for
n = 1, . . . , 4 and A0 is an arbitrary constant. Since f(0) = 0, we have A0 ≡ 0
and f is odd, then A4(x) and A2(x) must be vanish. Hence, from (2.6) we have

f(x) = A3(x) +A1(x).(2.7)

Letting (2.7) into (1.13), we have

A3(x + 3y) +A1(x+ 3y) +A3(x− 3y) +A1(x − 3y)

+A3(x+ 2y) +A1(x+ 2y) +A3(x− 2y) +A1(x− 2y) + 22[A3(x) +A1(x)]

− 13[A3(x+ y) +A1(x+ y)]− 13[A3(x − y) +A1(x− y)] + 24[A3(y) +A1(y)]

− 12[A3(2y) +A1(2y)] = 0.

Thus, we obtain

A3(x + 3y) +A3(x− 3y) +A3(x+ 2y) +A3(x − 2y) + 22A3(x)

− 13[A3(x+ y) +A3(x− y)] + 24A3(y)− 12A3(2y)

+A1(x+ 3y) +A1(x− 3y) +A1(x+ 2y) +A1(x− 2y) + 22A1(x)

− 13[A1(x+ y) +A1(x− y)] + 24A1(y)− 12A1(2y) = 0.

Noting that

A3(x+ y) +A3(x− y) = 2A3(x) + 6A1,2(x, y),

A1(x+ y) = A1(x) +A1(y),

A1,2(x, 3y) = 9A1,2(x, y), A3(3y) = 27A3(y),

A1,2(x, 2y) = 4A1,2(x, y), A3(2y) = 8A3(y),

A1(2y) = 2A1(y), A1(3y) = 3A1(y) and A1(−y) = −A1(y),

then we get

2A3(x) + 54A1,2(x, y) + 2A3(x) + 24A1,2(x, y) + 22A3(x)

− 13[2A3(x) + 6A1,2(x, y)] + 24A3(y)− 96A3(y)

+A1(x) +A1(3y) +A1(x) −A1(3y) +A1(x) + A1(2y) +A1(x)−A1(2y)

+ 22A1(x)− 13[A1(x) +A1(y) +A1(x)−A1(y)] + 24A1(y)− 24A1(y) = 0.

Thus, we obtain A3(y) = 0 and from (2.7) we have f(x) = A1(x) for all x ∈ R.

Hence f is additive, which completes the proof. �
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3. Proof of Theorem 1.4

From

f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x)

− 13 [f(x+ y) + f(x− y)] + 24f(y)− 12f(2y) = 0,(1.13)

we define fe(x) =
1
2 [f(x) + f(−x)] and fo(x) =

1
2 [f(x) − f(−x)] are even and

odd parts, respectively. Thus,

fe(x+ 3y) + fe(x − 3y) + fe(x+ 2y) + fe(x− 2y) + 22fe(x)

− 13[fe(x + y) + fe(x − y)] + 24fe(y)− 12fe(2y)

=
1

2
{f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x)

− 13[f(x+ y) + f(x− y)] + 24f(y)− 12f(2y)

+ f(−(x+ 3y)) + f(−(x− 3y)) + f(−(x+ 2y)) + f(−(x− 2y))

+ 22f(−x)− 13[f(−(x+ y)) + f(−(x− y))]

+ 24f(−y)− 12f(−2y)} = 0.(3.1)

This implies that fe satisfies (1.13). Since fe is even, from Theorem 2.2, we
have

fe(x) = A4(x),(3.2)

where A4(x) is the diagonal of 4-additive symmetric function A4 : R4 → R.
Consider the functional equation

fo(x+ 3y) + fo(x − 3y) + fo(x+ 2y) + fo(x− 2y) + 22fo(x)

− 13[fo(x+ y) + fo(x − y)] + 24fo(y)− 12fo(2y)

=
1

2
[f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x)

− 13[f(x+ y) + f(x− y)] + 24f(y)− 12f(2y)

− [f(−(x+ 3y)) + f(−(x− 3y)) + f(−(x+ 2y)) + f(−(x− 2y))

+ 22f(−x)− 13[f(−(x+ y)) + f(−(x− y))]]

+ 24f(−y)− 12f(−2y)] = 0.(3.3)

This shows that fo satisfies (1.13). Since fo is odd, from Theorem 2.2, we have

fo(x) = A1(x),(3.4)

where A1 is additive. Hence, from (3.2) and (3.4), we obtain

f(x) = A4(x) +A1(x),

where An(x) is the diagonal of n-additive symmetric function An : Rn → R for
n = 1, 4.

Conversely, assume that f(x) = A4(x) +A1(x).
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Noting that

A4(x+ y) +A4(x− y) = 2A4(x) + 12A2,2(x, y) + 2A4(y),

A4(3y) = 81A4(y), A2,2(x, 3y) = 9A2,2(x, y), A2,2(x, 2y) = 4A2,2(x, y),

A4(2y) = 16A4(y), A1(x+ y) = A1(x) +A1(y),

A3(2y) = 8A3(y), A1(2y) = 2A1(y),

then we have

[f(x+ 3y) + f(x− 3y)] + [f(x+ 2y) + f(x− 2y)] + 22f(x)

= A4(x+ 3y) +A1(x+ 3y) +A4(x− 3y) +A1(x− 3y)

+A4(x + 2y) +A1(x+ 2y) +A4(x− 2y) +A1(x − 2y)

+ 22[A4(x) +A1(x)]

= 2A4(x) + 108A2,2(x, y) + 162A4(y) + 2A4(x) + 48A2,2(x, y)

+ 32A4(y) + 22A4(x) + 26A1(x)

= 13[2A4(x) + 12A2,2(x, y) + 2A4(y) + 2A1(x)] − 24[A4(y) +A1(y)]

+ 12[A4(2y) +A1(2y)]

= 13[A4(x+ y) +A1(x+ y) +A4(x− y) +A1(x − y)]− 24[A4(y) +A1(y)]

+ 12[A4(2y) +A1(2y)]

= 13[f(x+ y) + f(x− y)]− 24f(y) + 12f(2y).

This completes the proof of the result.

4. Stability

In this section, we consider a stability problem which is proposed by Ulam
[12] in 1940: Let f be a mapping from a group (G1,+) to a metric group
(G2,+) with metric d(·, ·) such that

d(f(x + y), f(x) + f(y)) ≤ ǫ.

Do there exist a group homomorphism L : G1 → G2 and a constant δǫ > 0
such that

d(f(x), L(y)) ≤ δǫ

for all x ∈ G1? This problem was solved one year later by Hyers [7] under
the assumption that G2 is a Banach space with ‖·‖. A generalized version
of Hyers’s result was proved by Th. M. Rassias [9] for linear mappings by
considering an unbounded Cauchy difference in Banach spaces. In 1994, a
generalized of Rassias’s theorem was obtained by Gavruta [5] by replacing
the unbounded Cauchy difference by a general control function in the spirit
of Rassias approach. The stability problems of several functional equations
have been extensively investigated by a number of authors and there are many
interesting results concerning this problem (see [2, 4, 5, 6, 7, 9, 10, 11, 12]).
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The aim of this section is to investigate the stability of the generalized
additive-quartic functional equation (1.13). Let f : R → R be a function.
Then we define

Df (x, y) := f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y)

+ 22f(x)− 13f(x+ y)− 13f(x− y) + 24f(y)− 12f(2y)

for all x, y ∈ R.

Theorem 4.1. Let φ : R2 → [0,∞) be a function such that

∞
∑

i=0

φ(2ix, 2iy)

2i
converges(4.1)

for all x, y ∈ R. If the function f : R → R is an odd function which satisfies

|Df(x, y)| ≤ φ(x, y)(4.2)

for all x, y ∈ R, then there exists a unique additive function A : R → R which

satisfies the equation (1.13) and the inequality

|f(y)−A(y)| ≤
1

24

∞
∑

i=0

φ(0, 2iy)

2i
(4.3)

for all y ∈ R, where the function A is defined by

A(y) = lim
n→∞

f(2ny)

2n
(4.4)

for all y ∈ R.

Proof. Putting x = 0 in (4.2), we have

|f(3y) + f(−3y) + f(2y) + f(−2y) + 22f(0)

−13f(y)− 13f(−y) + 24f(y)− 12f(2y)| ≤ φ(0, y).(4.5)

Since f is odd and f(0) = 0, we obtain

|24f(y)− 12f(2y)| ≤ φ(0, y).

That is,

|12f(2y)− 24f(y)| ≤ φ(0, y).(4.6)

Dividing (4.6) by 24, we have
∣

∣

∣

∣

f(2y)

2
− f(y)

∣

∣

∣

∣

≤
1

24
φ(0, y).(4.7)

Replacing y by 2y in (4.7) and dividing this by 2, we obtain
∣

∣

∣

∣

f(22y)

22
−

f(2y)

2

∣

∣

∣

∣

≤
1

24
[
φ(0, 2y)

2
].(4.8)
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From (4.7) and (4.8), we have
∣

∣

∣

∣

f(22y)

22
− f(y)

∣

∣

∣

∣

≤
1

24
[
φ(0, 2y)

2
+ φ(0, y)].(4.9)

Using the mathematical induction, we can extend (4.9) to
∣

∣

∣

∣

f(2ny)

2n
− f(y)

∣

∣

∣

∣

≤
1

24

n−1
∑

i=0

φ(0, 2iy)

2i
≤

1

24

∞
∑

i=0

φ(0, 2iy)

2i
(4.10)

for all y ∈ R and for all n ∈ N.

Next, we will show that { f(2ny)
2n } is a Cauchy sequence. For integers m,n >

0, we have
∣

∣

∣

∣

f(2n+my)

2n+m
−

f(2my)

2m

∣

∣

∣

∣

=
1

2m

∣

∣

∣

∣

f(2n2my)

2n
− f(2my)

∣

∣

∣

∣

≤
1

2m
.
1

24

∞
∑

i=0

φ(0, 2i2my)

2i

=
1

24

∞
∑

i=0

φ(0, 2i+my)

2i+m

=
1

24

∞
∑

j=m

φ(0, 2jy)

2j
.(4.11)

Thus this is the tail of the infinite series of (4.1), which converges (for any fixed

y) to zero as m → ∞. This implies that the sequence { f(2ny)
2n } is a Cauchy

sequence. Since R is complete, there exists a function A : R → R such that

A(y) = lim
n→∞

f(2ny)

2n

for all y ∈ R. By letting n → ∞ in (4.10), we obtain
∣

∣

∣

∣

lim
n→∞

f(2ny)

2n
− f(y)

∣

∣

∣

∣

≤
1

24

∞
∑

i=0

φ(0, 2iy)

2i
.

That is,

|A(y)− f(y)| ≤
1

24

∞
∑

i=0

φ(0, 2iy)

2i
.

This implies that

|f(y)−A(y)| ≤
1

24

∞
∑

i=0

φ(0, 2iy)

2i
,

so we arrive at the formula (4.3) for all y ∈ R.
To show that A satisfies the equation (1.13), consider

A(x + 3y) +A(x− 3y) +A(x+ 2y) +A(x − 2y) + 22A(x)

− 13A(x+ y)− 13A(x− y) + 24A(y)− 12A(2y)
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= lim
n→∞

1

2n
[f(2n(x + 3y)) + f(2n(x − 3y)) + f(2n(x + 2y)) + f(2n(x− 2y))

+ 22f(2nx)− 13f(2n(x+ y))− 13f(2n(x− y)) + 24f(2ny)− 12f(2n2y)]

= lim
n→∞

Df (2
nx, 2ny)

2n
.

Thus, by (4.2), we obtain

|DA(x, y)| ≤ lim
n→∞

φ(2nx, 2ny)

2n
.(4.12)

Using (4.1), we have DA(x, y) = 0. Hence A satisfies the equation (1.13). Since
A is odd and by Theorem 2.2, we have A is additive.

To prove the uniqueness of A, suppose that there exists a function S : R → R

which satisfies (1.13) and (4.3) with A replaced by S. Note that Theorem 1.4
gives us A(2ny) = 2nA(y) and S(2ny) = 2nS(y) for all y ∈ R and n ∈ N. Then
we have

|A(y)− S(y)| =

∣

∣

∣

∣

A(2ny)

2n
−

S(2ny)

2n

∣

∣

∣

∣

=
1

2n
|A(2ny)− S(2ny)|

=
1

2n
|A(2ny)− f(2ny) + f(2ny)− S(2ny)|

≤
1

2n
|A(2ny)− f(2ny)|+

1

2n
|f(2ny)− S(2ny)|

≤
1

2n
.
1

24

∞
∑

i=0

φ(0, 2i2ny)

2i
+

1

2n
.
1

24

∞
∑

i=0

φ(0, 2i2ny)

2i

=
1

2n
.
2

24

∞
∑

i=0

φ(0, 2i2ny)

2i

=
1

12

∞
∑

i=0

φ(0, 2i+ny)

2i+n

=
1

12

∞
∑

j=n

φ(0, 2jy)

2j
.

Thus this is the tail of the infinite series of (4.1), which converges (for any fixed
y) to zero as n → ∞. Thus we immediately find the uniqueness of A. This
completes the proof of the theorem. �

Theorem 4.2. Let φ : R2 → [0,∞) be a function such that

∞
∑

i=0

φ(2ix, 2iy)

16i
converges(4.13)

for all x, y ∈ R. If the function f : R → R is an even function which satisfies

|Df (x, y)| ≤ φ(x, y) (x, y ∈ R),(4.14)
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and f(0) = 0, then there exists a unique function Q : R → R satisfying the

equation (1.13) and the inequality

|f(y)−Q(y)|

≤ 1
960

∞
∑

i=0

2φ(3(2iy),2iy)+2φ(2(2iy),2iy)+φ(0,2(2iy))+18φ(2iy,2iy)+44φ(0,2iy)
16i(4.15)

for all y ∈ R, where the function Q is defined by

Q(y) = lim
n→∞

f(2ny)

16n
(4.16)

for all y ∈ R.

Proof. Putting x = 3y in (4.14) and using f(0) = 0, we have

|f(6y) + f(5y)− 13f(4y) + 22f(3y)− 25f(2y) + 25f(y)| ≤ φ(3y, y).(4.17)

Putting x = 2y in (4.14). Since f(0) = 0 and f is even, we have

|f(5y) + f(4y)− 13f(3y) + 10f(2y) + 12f(y)| ≤ φ(2y, y).(4.18)

From (4.17) and (4.18), we obtain

|f(6y)− 14f(4y) + 35f(3y)− 35f(2y) + 13f(y)| ≤ φ(3y, y) + φ(2y, y).(4.19)

Putting x = 0 in (4.14). By using f(0) = 0 and f is even, we have

|2f(3y)− 10f(2y)− 2f(y)| ≤ φ(0, y).(4.20)

That is,

|f(3y)− 5f(2y)− f(y)| ≤
φ(0, y)

2
.(4.21)

Replacing y by 2y in (4.21), we obtain

|f(6y)− 5f(4y)− f(2y)| ≤
φ(0, 2y)

2
.(4.22)

From (4.19) and (4.22), we obtain

|−9f(4y) + 35f(3y)− 34f(2y) + 13f(y)|

≤ φ(3y, y) + φ(2y, y) +
φ(0, 2y)

2
.(4.23)

Putting x = y in (4.14). By using f(0) = 0 and f is even, we have

|f(4y) + f(3y)− 24f(2y) + 47f(y)| ≤ φ(y, y).(4.24)

Thus,

|9f(4y) + 9f(3y)− 216f(2y) + 423f(y)| ≤ 9φ(y, y).(4.25)

From (4.23) and (4.25), we obtain

|44f(3y)− 250f(2y) + 436f(y)|

≤ φ(3y, y) + φ(2y, y) +
φ(0, 2y)

2
+ 9φ(y, y).(4.26)
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From (4.21), we have

|44f(3y)− 220f(2y)− 44f(y)| ≤ 22φ(0, y).(4.27)

From (4.26) and (4.27), we obtain

|−30f(2y) + 480f(y)|

≤ φ(3y, y) + φ(2y, y) +
φ(0, 2y)

2
+ 9φ(y, y) + 22φ(0, y).(4.28)

Thus, we have

|f(2y)− 16f(y)|

≤
1

30
[φ(3y, y) + φ(2y, y) +

φ(0, 2y)

2
+ 9φ(y, y) + 22φ(0, y)].(4.29)

Dividing by 16 in (4.29), we have
∣

∣

∣

∣

f(2y)

16
− f(y)

∣

∣

∣

∣

≤
1

960
[2φ(3y, y) + 2φ(2y, y) + φ(0, 2y) + 18φ(y, y) + 44φ(0, y)].(4.30)

Replacing y by 2y in (4.30) and dividing this by 16, we obtain
∣

∣

∣

∣

f(22y)

(16)2
−

f(2y)

16

∣

∣

∣

∣

≤ 1
960 [

2φ(3(2y),2y)+2φ(2(2y),2y)+φ(0,2(2y))+18φ(2y,2y)+44φ(0,2y)
16 ].(4.31)

From the equations (4.30) and (4.31), we have
∣

∣

∣

∣

f(22y)

(16)2
− f(y)

∣

∣

∣

∣

≤ 1
960 [

2φ(3(2y),2y)+2φ(2(2y),2y)+φ(0,2(2y))+18φ(2y,2y)+44φ(0,2y)
16

+ 2φ(3y, y) + 2φ(2y, y) + φ(0, 2y) + 18φ(y, y) + 44φ(0, y)].(4.32)

Using the mathematical induction, we can extend (4.32) to
∣

∣

∣

∣

f(2ny)

16n
− f(y)

∣

∣

∣

∣

≤
1

960

n−1
∑

i=0

2φ(3(2iy),2iy)+2φ(2(2iy),2iy)+φ(0,2(2iy))+18φ(2iy,2iy)+44φ(0,2iy)
16i

≤
1

960

∞
∑

i=0

2φ(3(2iy),2iy)+2φ(2(2iy),2iy)+φ(0,2(2iy))+18φ(2iy,2iy)+44φ(0,2iy)
16i(4.33)

for all y ∈ R and for all n ∈ N.
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Next, we will show that { f(2ny)
16n } is a Cauchy sequence. For integers m,n >

0, we have
∣

∣

∣

∣

f(2n+my)

16n+m
−

f(2my)

16m

∣

∣

∣

∣

=
1

16m

∣

∣

∣

∣

1(2n2my)

16n
− f(2my)

∣

∣

∣

∣

≤
1

16m
.
1

960

∞
∑

i=0

1

16i
[2φ(3(2i2my), 2i2my) + 2φ(2(2i2my), 2i2my)

+ φ(0, 2(2i2my)) + 18φ(2i2my, 2i2my) + 44φ(0, 2i2my)].

=
1

960

∞
∑

i=0

1

16i+m
[2φ(3(2i+my), 2i+my) + 2φ(2(2i+my), 2i+my)

+ φ(0, 2(2i+my)) + 18φ(2i+my, 2i+my) + 44φ(0, 2i+my)].(4.34)

Since the right-hand side of (4.34) converges (for any fixed y) to 0 as n → ∞,

then the sequence { f(2ny)
16n } is a Cauchy sequence. Since R is complete, there

exists a function Q : R → R such that

Q(y) = lim
n→∞

f(2ny)

16n

for all y ∈ R. From (4.33), we obtain
∣

∣

∣

∣

lim
n→∞

f(2ny)

16n
− f(y)

∣

∣

∣

∣

≤ 1
960

∞
∑

i=0

2φ(3(2iy),2iy)+2φ(2(2iy),2iy)+φ(0,2(2iy))+18φ(2iy,2iy)+44φ(0,2iy)
16i .(4.35)

Therefore,

|f(y)−Q(y)|

≤ 1
960

∞
∑

i=0

2φ(3(2iy),2iy)+2φ(2(2iy),2iy)+φ(0,2(2iy))+18φ(2iy,2iy)+44φ(0,2iy)
16i .(4.36)

Next, we claim that Q satisfies the equation (1.13). Consider

DQ(x, y)

= Q(x+ 3y) +Q(x− 3y) +Q(x+ 2y) +Q(x− 2y) + 22Q(x)

− 13Q(x+ y)− 13Q(x− y) + 24Q(y)− 12Q(2y)

= lim
n→∞

1

16n
[f(2n(x+ 3y)) + f(2n(x− 3y)) + f(2n(x+ 2y)) + f(2n(x− 2y))

+ 22f(2nx)− 13f(2n(x+ y))− 13f(2n(x − y)) + 24f(2ny)− 12f(2ny)]

= lim
n→∞

Df (2
nx, 2ny)

16n
.
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Thus, we obtain

|DQ(x, y)| ≤ lim
n→∞

1

16n
|Df (2

nx, 2ny)| ≤ lim
n→∞

φ(2nx, 2ny)

16n
= 0

for all x, y ∈ R. This means that Q satisfies (1.13).
To prove the uniqueness of Q, suppose that there exists a function S : R → R

satisfying (1.13) and (4.15). Note that Theorem 1.4 gives us Q(2ny) = 16nQ(y)
and S(2ny) = 16nS(y) for all y ∈ R and n ∈ N. Then we have

|Q(y)− S(y)| =

∣

∣

∣

∣

Q(2ny)

16n
−

S(2ny)

16n

∣

∣

∣

∣

=
1

16n
|Q(2ny)− S(2ny)|

=
1

16n
|Q(2ny)− f(2ny) + f(2ny)− S(2ny)|

≤
1

16n
|Q(2ny)− f(2ny)|+

1

16n
|f(2ny)− S(2ny)|

≤
2

16n
.
1

960

∞
∑

i=0

1

16i
[2φ(3(2i2ny), 2i2ny) + 2φ(2(2i2ny), 2i2ny)

+ φ(0, 2(2i2ny)) + 18φ(2i2ny, 2i2ny) + 44φ(0, 2i2ny)]

≤
2

960

∞
∑

i=0

1

16i+n
[2φ(3(2i+ny), 2i+ny) + 2φ(2(2i+ny), 2i+ny)

+ φ(0, 2(2i+ny)) + 18φ(2i+ny, 2i+ny) + 44φ(0, 2i+ny)](4.37)

for all y ∈ R. Since the right-hand side of (4.37) converges to 0 as n → ∞, this
completes the proof. �

Theorem 4.3. Let φ : R2 → [0,∞) be a function such that

∞
∑

i=0

φ(2ix, 2iy)

2i
converges(4.38)

for all x, y ∈ R. If the function f : R → R satisfies

|Df(x, y)| ≤ φ(x, y)(4.39)

for all x, y ∈ R and f(0) = 0, then there exists a unique additive function

A : R → R and a unique quartic function Q : R → R which satisfies the

equation (1.13) and the inequality

|f(y)−A(y)−Q(y)|

≤
1

48

∞
∑

i=0

[
φ(0, 2iy) + φ(0,−2iy)

2i
+

1

40× 16i
[2φ(3(2iy), 2iy)

+ 2φ(3(−2iy),−2iy) + 2φ(2(2iy), 2iy) + 2φ(2(−2iy),−2iy)

+ φ(0, 2(2iy)) + φ(0, 2(−2iy)) + 18φ(2iy, 2iy) + 18φ(−2iy,−2iy)



1774 CHARINTHIP HENGKRAWIT AND ANURAK THANYACHAROEN

+ 44φ(0, 2iy) + 44φ(0,−2iy)]](4.40)

for all y ∈ R.

Proof. Since

fo(x + 3y) + fo(x− 3y) + fo(x+ 2y) + fo(x− 2y) + 22fo(x)

− 13[fo(x+ y) + fo(x− y)] + 24fo(y)− 12fo(2y)

=
1

2
[f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x)

− 13[f(x+ y) + f(x− y)] + 24f(y)− 12f(2y)

− [f(−(x+ 3y)) + f(−(x− 3y)) + f(−(x+ 2y)) + f(−(x− 2y))

+ 22f(−x)− 13[f(−(x+ y)) + f(−(x− y))]]

+ 24f(−y)− 12f(−2y)].(4.41)

Thus, we obtain

|Dfo(x, y)| =
1

2
[|Df (x, y)−Df (−x,−y)|]

≤
1

2
[|Df (x, y)|+ |Df (−x,−y)|]

≤
1

2
[φ(x, y) + φ(−x,−y)].(4.42)

We have

|Dfo(x, y)| ≤
1

2
[φ(x, y) + φ(−x,−y)](4.43)

for all x, y ∈ R. Since fo is odd, then by Theorem 4.1, there exists a unique
additive function A : R → R satisfying

|fo(y)−A(y)| ≤
1

24

∞
∑

i=0

φ(0, 2iy) + φ(0,−2iy)

2× 2i
(4.44)

for all y ∈ R. Since

fe(x+ 3y) + fe(x− 3y) + fe(x+ 2y) + fe(x− 2y) + 22fe(x)

− 13[fe(x+ y) + fe(x− y)] + 24fe(y)− 12fe(2y)

=
1

2
[f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x)

− 13[f(x+ y) + f(x− y)] + 24f(y)− 12f(2y)

+ f(−(x+ 3y)) + f(−(x− 3y)) + f(−(x+ 2y)) + f(−(x− 2y))

+ 22f(−x)− 13[f(−(x+ y)) + f(−(x− y))]

+ 24f(−y)− 12f(−2y)] = 0.(4.45)

Thus, we obtain

|Dfe(x, y)| =
1

2
[|Df(x, y) +Df(−x,−y)|]
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≤
1

2
[|Df(x, y)| + |Df(−x,−y)|]

≤
1

2
[φ(x, y) + φ(−x,−y)].(4.46)

We have

|Dfe(x, y)| ≤
1

2
[φ(x, y) + φ(−x,−y)](4.47)

for all x, y ∈ R. Since fe is even and f(0) = 0, then by Theorem 4.2, there
exists a unique quartic function Q : R → R satisfying

|fe(y)−Q(y)|

≤
1

960

∞
∑

i=0

1

2× 16i
[2φ(3(2iy), 2iy) + 2φ(2(2iy), 2iy) + φ(0, 2(2iy))

+ 18φ(2iy, 2iy)+44φ(0, 2iy)+2φ(3(−2iy),−2iy)+2φ(2(−2iy),−2iy)

+ φ(0, 2(−2iy))+18φ(−2iy,−2iy)+44φ(0,−2iy)](4.48)

for all y ∈ R. Combining (4.44) and (4.48), we obtain

|fo(y)−A(y)|+ |fe(y)−Q(y)|

≤
1

24

∞
∑

i=0

φ(0, 2iy) + φ(0,−2iy)

2× 2i

+
1

960

∞
∑

i=0

1

2× 16i
[2φ(3(2iy), 2iy)+2φ(2(2iy), 2iy)

+φ(0, 2(2iy))+18φ(2iy, 2iy)+44φ(0, 2iy)+2φ(3(−2iy),−2iy)

+2φ(2(−2iy),−2iy)+φ(0, 2(−2iy))+18φ(−2iy,−2iy)+44φ(0,−2iy)].(4.49)

Thus, we have

|fo(y)−A(y) + fe(y)−Q(y)|

≤
1

48

∞
∑

i=0

[
φ(0, 2iy) + φ(0,−2iy)

2i
+

1

40
.
1

16i
[2φ(3(2iy), 2iy)

+2φ(2(2iy), 2iy) + φ(0, 2(2iy)) + 18φ(2iy, 2iy) + 44φ(0, 2iy)

+2φ(3(−2iy),−2iy) + 2φ(2(−2iy),−2iy) + φ(0, 2(−2iy))

+18φ(−2iy,−2iy) + 44φ(0,−2iy)]].(4.50)

That is,

|f(y)−A(y)−Q(y)|

≤
1

48

∞
∑

i=0

[
φ(0, 2iy) + φ(0,−2iy)

2i
+

1

40× 16i
[2φ(3(2iy), 2iy)

+ 2φ(3(−2iy),−2iy) + 2φ(2(2iy), 2iy) + 2φ(2(−2iy),−2iy)
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+ φ(0, 2(2iy)) + φ(0, 2(−2iy)) + 18φ(2iy, 2iy) + 18φ(−2iy,−2iy)

+ 44φ(0, 2iy) + 44φ(0,−2iy)]].(4.51)

This completes the proof of the theorem. �
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Państwowe Wydawnictwo Naukowe-Uniwersylet Ślaski, Warszawa-Kraków-Katowice,
1985.

[9] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.
Math. Soc. 72 (1978), no. 2, 297–300.

[10] P. K. Sahoo, On a functional equation characterizing polynomials of degree three, Bull.
Inst. Math. Acad. Sin. (N.S.) 32 (2004), no. 1, 35–44.

[11] , A generalized cubic functional equation, Acta Math. Sin. (Engl. Ser.) 21 (2005),
no. 5, 1159–1166.

[12] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.

Charinthip Hengkrawit

Department of Mathematics and Statistics

Faculty of Science and Technology

Thammasat University

Phatumthani 12121, Thailand

E-mail address: charinthip@mathstat.sci.tu.ac.th

Anurak Thanyacharoen

Department of Mathematics

Faculty of Science and Technology

Muban Chombueng Rajabhat University

Ratchaburi 70150, Thailand

E-mail address: ake poiuy@yahoo.com




