References
- F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965), 1041-1044. https://doi.org/10.1073/pnas.54.4.1041
- T. Aoki, On the stability of the linear transformation inj Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- J. Baker, The stability of the cosine equations, Proc. Amer. Math. Soc. 80 (1980), 411-416. https://doi.org/10.1090/S0002-9939-1980-0580995-3
- J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation f(x+y) = f(x) + f(y), Proc. Amer. Math. Soc. 74 (1979), 242-246.
- D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397. https://doi.org/10.1215/S0012-7094-49-01639-7
- G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 146-190.
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D.H. Hyers, G. Isac, and Th.M. Rassias, Stability of functional equations in several variables, Birkhauser-Basel-Berlin.
- K.W. Jun, G.H. Kim and Y.W. Lee, Stability of generalized gamma and beta functional equations, Aequation Math. 60 (2000), 15-24. https://doi.org/10.1007/s000100050132
- S.-M. Jung, On the general Hyers-Ulam stability of gamma functional equation, Bull. Korean Math. Soc. 34(3) (1997), 437-446.
- S.-M. Jung, On the stability of the gamma functional equation, Results Math. 33 (1998), 306-309. https://doi.org/10.1007/BF03322090
- G.H. Kim, and Y.W. Lee, The stability of the beta functional equation, Babes- Bolyai Mathematica XLV(1) (2000), 89-96.
- Y.W. Lee, On the stability of a quadratic Jensen type functional equation, J. Math. Anal. Appl. 270 (2002), 590-601. https://doi.org/10.1016/S0022-247X(02)00093-8
- Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- K. Ravi, J. M. Rassias and B. V. S. Kumar, Ulam stability of reciprocal difference and adjoint functional equations to appear.
- S.M. Ulam, Problems in Modern Mathematics, Proc. Chap. VI. Wiley. NewYork, 1964.