STABILITY OF THE RECIPROCAL DIFFERENCE AND ADJOINT FUNCTIONAL EQUATIONS IN THREE VARIABLES

  • Kim, Gwang Hui (Department of Mathematics Kangnam University) ;
  • Lee, Young Whan (Department of Computer Hacking and Information Security College of Natural Science Daejeon University)
  • Received : 2010.08.21
  • Accepted : 2010.09.10
  • Published : 2010.09.30

Abstract

In this paper, we prove stabilities of the reciprocal difference functional equation $$r(\frac{x+y+z}{3})-r(x+y+z)=\frac{2r(x)r(y)r(z)}{r(x)r(y)+r(y)r(z)+r(z)r(x)}$$ and the reciprocal adjoint functional equation $$r(\frac{x+y+z}{3})+r(x+y+z)=\frac{4r(x)r(y)r(z)}{r(x)r(y)+r(y)r(z)+r(z)r(x)}$$ with three variables. Stabilities of the reciprocal difference functional equation and the reciprocal adjoint functional equation in two variables was proved by K. Ravi, J. M. Rassias and B. V. Senthil Kumar. We extend their results to three variables in similar types.

Keywords

References

  1. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965), 1041-1044. https://doi.org/10.1073/pnas.54.4.1041
  2. T. Aoki, On the stability of the linear transformation inj Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  3. J. Baker, The stability of the cosine equations, Proc. Amer. Math. Soc. 80 (1980), 411-416. https://doi.org/10.1090/S0002-9939-1980-0580995-3
  4. J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation f(x+y) = f(x) + f(y), Proc. Amer. Math. Soc. 74 (1979), 242-246.
  5. D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397. https://doi.org/10.1215/S0012-7094-49-01639-7
  6. G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 146-190.
  7. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  8. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  9. D.H. Hyers, G. Isac, and Th.M. Rassias, Stability of functional equations in several variables, Birkhauser-Basel-Berlin.
  10. K.W. Jun, G.H. Kim and Y.W. Lee, Stability of generalized gamma and beta functional equations, Aequation Math. 60 (2000), 15-24. https://doi.org/10.1007/s000100050132
  11. S.-M. Jung, On the general Hyers-Ulam stability of gamma functional equation, Bull. Korean Math. Soc. 34(3) (1997), 437-446.
  12. S.-M. Jung, On the stability of the gamma functional equation, Results Math. 33 (1998), 306-309. https://doi.org/10.1007/BF03322090
  13. G.H. Kim, and Y.W. Lee, The stability of the beta functional equation, Babes- Bolyai Mathematica XLV(1) (2000), 89-96.
  14. Y.W. Lee, On the stability of a quadratic Jensen type functional equation, J. Math. Anal. Appl. 270 (2002), 590-601. https://doi.org/10.1016/S0022-247X(02)00093-8
  15. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  16. K. Ravi, J. M. Rassias and B. V. S. Kumar, Ulam stability of reciprocal difference and adjoint functional equations to appear.
  17. S.M. Ulam, Problems in Modern Mathematics, Proc. Chap. VI. Wiley. NewYork, 1964.