• Title/Summary/Keyword: frequency-to-voltage converter

Search Result 920, Processing Time 0.027 seconds

A Multi-bit VCO-based Linear Quantizer with Frequency-to-current Feedback using a Switched-capacitor Structure

  • Park, Sangyong;Ryu, Hyuk;Sung, Eun-Taek;Baek, Donghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.145-148
    • /
    • 2015
  • In this letter, we present a new linearization method for a voltage controlled oscillator (VCO)-based quantizer in an analog-to-digital converter (ADC). The nonlinearity of the VCO generates unwanted harmonic spurs and reduces the signal-to-noise and distortion ratio (SNDR) of the VCO-based quantizer. This letter suggests a frequency-to-current feedback method to effectively suppress harmonic distortion. The proposed method decreases the harmonic spurs by more than 53 dB. And a VCO-based quantizer employing the proposed linearization method achieves a high SNDR of 74.1 dB.

Microcomputer-Based Data Acquisition System for Engine Performance Test (엔진 성능(性能) 시험용(試験用) 데이터 수집(蒐集) 시스템에 관한 연구(硏究))

  • Im, S.J.;Ryu, K.H.;Park, B.S.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.1
    • /
    • pp.8-16
    • /
    • 1986
  • This study was carried out to develop a microcomputer-based data acquisition system for engine performance test. A low-cost data acquisition system was developed utilizing an "APPLE II PLUS" microcomputer. The developed system consists of microcomputer, RPM counter included frequency-to-voltage converter, preamplifier for two load cells and 8-bit analog-to-digital converter with 16 chnnels. The system simultaneously measures engine speed by means of photointerrupter, torque and fuel consumption by means of load cells with variable sample numbers, sampling intervals and repetitions. The system collects, processes and provides data for storing on the $4{\frac{1}{4}}$ inch floppy disk as well as for writing out on the printer.

  • PDF

An Improved Phase-Shifted Carrier PWM for Modular Multilevel Converters with Redundancy Sub-Modules

  • Choi, Jong-Yun;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.473-479
    • /
    • 2016
  • In this paper, the PSC PWM method is chosen as the optimal modulation method for a 20MW VSC HVDC, with consideration of the harmonic distortion of the output voltage, the switching frequency, and the control implementation difficulty. In addition, a new PSC PWM method is proposed in order to achieve an easy application and to solve the redundant control problems encountered in the previous PSC PWM method. To verify the proposed PSC PWM method, PSCAD/EMTDC simulations for an 11-level MMC RTDS HILS test and an 11-level MMC prototype converter test were performed. As can be seen from the results of these tests, the proposed PSC PWM method shows good results in an 11-level MMC with redundant sub-modules.

A 15b High Resolution Hybrid A/D Converter with On-Chip Filter (내장 필터를 갖는 15b 고해상도 혼합형 A/D 변환기)

  • An, Kyung-Chan;Lim, Shin-Il
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.348-352
    • /
    • 2017
  • In this paper, we propose a high resolution A/D converter for a sensor interface that processes low frequency AC signals. A 6b SAR ADC with low power consumption and a 11b incremental ADC with high resolution are combined together to perform 15b resolution. Conventional hybrid ADC has a disadvantage that it can convert t only DC signal, but in this paper, it is possible to convert data to AC signal by increasing input range of incremental ADC. The decimation filter is implemented on-chip. The designed Hybrid ADC operates at supply voltage of 1.8V and consumes the current of 6.98uA. The OSR (oversampling ratio) is 90. And SFDR, SNDR, ENOB and FoMs are 96.59dB, 88.47dB, 14.4-bit and 139.5dB, respectively.

Contactless Power Charger for Light Electric Vehicles Featuring Active Load Matching

  • Jiang, Wei;Xu, Song;Li, Nailu
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.102-110
    • /
    • 2016
  • Contactless power transfer technology is gaining increasing attention in city transportation applications because of its high mobility and flexibility in charging and its commensurate power level with conductive power transfer method. In this study, an inductively coupled contactless charging system for a 48 V light electric vehicle is proposed. Although this study does not focus on system efficiency, the generic problems in an inductively coupled contactless power transfer system without ferromagnetic structure are discussed. An active load matching method is also proposed to control the power transfer on the receiving side through a load matching converter. Small signal modeling and linear control technology are applied to the load matching converter for port voltage regulation, which effectively controls the power flow into the load. A prototype is built, and experiments are conducted to reveal the intrinsic characteristics of a series-series resonant inductive power charger in terms of frequency, air gap length, power flow control, coil misalignment, and efficiency issues.

A Novel Power Frequency Changer Based on Utility AC Connected Half-Bridge One Stage High Frequency AC Conversion Principle

  • Saha Bishwajit;Koh Kang-Hoon;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.203-205
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

A Study on the Optimal Parameter Selection of a Power System Stabilizer and Power Converters for HVDC Linked System (HVDC 연계 시스템의 전력계통 안정화 장치와 전력변환기 적정 파라미터 선정에 관한 연구)

  • 조의상;김경철;최홍규
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-72
    • /
    • 2001
  • Power system stabilizer act efficiently to damp the electromechanical oscillations in interconnected power systems. This paper presents an algorithm for the optimal parameter selection of a power system stabilizer in two-area power systems with a series HVDC link. This method is one of the classical techniques by allocating properly pole-zero positions to fit as closely as desired the ideal phase lead between the voltage reference and the generator electrical power and by changing the gain to produce a necessary damping torque over the matched frequency range. Control of HVDC converter and inverter are used a constant current loop. Proper parameters of PI controllers are obtain based on the Root-locus technique in other to have sufficient speed and stability margin to cope with charging reference values and disturbance. The small signal stability arid transient stability studies using the PSS parameters obtained from this method show that a natural oscillation frequency of the studycase system is adequately damped. Also the simulation results using the HVDC converter and inverter parameters obtained from this proposed method show proper current control characteristics. The simulation used in the paper was performed by the Power System Toolbox software program based on MATLAB.

  • PDF

The Development of High-Current Power Supply System for Electrolytic Copper Foil

  • Luo, An;Ma, Fujun;Xiong, Qiaopo;He, Zhixing
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.399-410
    • /
    • 2015
  • A 6.5 V/50 kA high-frequency switching power supply (HSPS) system composed of 10 power modules is developed to meet the requirements of copper-foil electrolysis. The power module is composed of a two-leg pulse width modulation (PWM) rectifier and a DC/DC converter. The DC/DC converter adopts two full-wave rectifiers in parallel to enhance the output. For the two-leg PWM rectifier, the ripple of the DC-link voltage is derived. A composite control method with a ripple filter is then proposed to effectively improve the performance of the rectifier. To meet the process demand of copper-foil electrolysis, the virtual impedance-based current-sharing control method with load current full feedforward is proposed for n-parallel DC/DC converters. The roles of load current feedforward and virtual impedance are analyzed, and the current-sharing control model of the HSPS system is derived. Virtual impedance is used to adjust the current-sharing impedance without changing the equivalent output impedance, which can effectively reduce current-sharing errors. Finally, simulation and experimental results verify the structure and control method.

A Study on Single-Stage High Frequency Resonant Inverter (단일전력단으로 구성된 고주파 공진 인버터에 관한 연구)

  • Won J. S.;Kang J. W.;Kim D. H.;Jung S. G.;Lee Y. S.;Lee B. S.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.750-753
    • /
    • 2002
  • A novel single-stage half-bridge high frequency resonant inverter using ZVS(Zero Voltage Switching) with high input power factor suitable for induction heating applications is presented in this paper. The proposed high frequency resonant Inverter integrates half-bridge boost rectifier as power factor corrector(PFC) and half-bridge resonant inverter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode (DCM) with constant duty cycle and variable switching frequency. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

Development of the Starting Algorithm and Starter for Turbo Generator (터보 제너레이터의 시동 알고리즘 및 시동기 개발)

  • 노민식;박승엽
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • The starter of the turbo generator is composed of a high speed generator(HSG), an inverter and a boost converter instead of a gearbox, a DC motor and a low-voltage battery in the starter of the turbo shaft generation system. Because turbo generator is needed a high speed motoring at start-up, high speed generator has a low leakage inductance and inverter need a high DC link voltage. In this study, for developing the stater of a turbo generator, a boost converter with a high capacity was developed to convert high voltage from a low battery voltage. And for controlling a high frequency current to be injected to a motor winding with a low leakage inductance, the inverter with a high precision and a high speed operation was designed and for a stable ignition, the starting algorithm of a turbo generator was proposed. Turbo generator was started by the starter developed to verify the performances.