Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.2.399

The Development of High-Current Power Supply System for Electrolytic Copper Foil  

Luo, An (College of Electrical and Information Engineering, Hunan University)
Ma, Fujun (College of Electrical and Information Engineering, Hunan University)
Xiong, Qiaopo (722th Research Institute, China Shipbuilding Industry Corporation (CSIC))
He, Zhixing (College of Electrical and Information Engineering, Hunan University)
Publication Information
Journal of Power Electronics / v.15, no.2, 2015 , pp. 399-410 More about this Journal
Abstract
A 6.5 V/50 kA high-frequency switching power supply (HSPS) system composed of 10 power modules is developed to meet the requirements of copper-foil electrolysis. The power module is composed of a two-leg pulse width modulation (PWM) rectifier and a DC/DC converter. The DC/DC converter adopts two full-wave rectifiers in parallel to enhance the output. For the two-leg PWM rectifier, the ripple of the DC-link voltage is derived. A composite control method with a ripple filter is then proposed to effectively improve the performance of the rectifier. To meet the process demand of copper-foil electrolysis, the virtual impedance-based current-sharing control method with load current full feedforward is proposed for n-parallel DC/DC converters. The roles of load current feedforward and virtual impedance are analyzed, and the current-sharing control model of the HSPS system is derived. Virtual impedance is used to adjust the current-sharing impedance without changing the equivalent output impedance, which can effectively reduce current-sharing errors. Finally, simulation and experimental results verify the structure and control method.
Keywords
Composite control; Current sharing; Feedforward control; High frequency; Switching power supply; Two-leg rectifier;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. J. Shieh, “Analysis and design of parallel-connected peak-current-mode-controlled switching DC/DC power supplies,” IEE Proc.-Electr. Power Appl., Vol. 151, No. 4, pp. 434-442, Jul. 2004.   DOI   ScienceOn
2 W. Yu and D. Xu, “Control scheme of paralleled UPS system based on output virtual resistance,” in Proc. the CSEE, Vol. 29, No. 24, pp. 32-39, Aug. 2009.
3 Y. Huang and C. K. Tse, “Classification of parallel DC/DC converters part I: circuit theory,” European Conference on Circuit Theory and Design, pp. 1010-1013, 2007.
4 S. K. Mazumder, M. Tahir, and K. Acharya, “Master–slave current-sharing control of a parallel DC–DC converter system over an RF communication interface,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 59-66, Jan. 2008.   DOI   ScienceOn
5 Y. Zhang, M. Yu, L. Fangrui, L. Shuming, Y. Kang, “Instantaneous current-sharing control strategy for modular UPS using virtual impedance,” in Proc. the CSEE, Vol. 32, No. 21, pp. 8-14, Jul. 2012.
6 J. M. Guerrero, J. Matas, L. García de Vicuña, M. Castilla, and J. Miret, “Decentralized control for parallel operation of distributed generation inverters using resistive output impedance,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 994-1004, Apr. 2007.   DOI   ScienceOn
7 Y.-K. Lo, C.-T. Ho, and J.-M. Wang, “Elimination of the output voltage imbalance in a half-bridge boost rectifier,” IEEE Trans. Power Electron., Vol. 22, No. 4, pp. 1352-1360, Jul. 2007.   DOI   ScienceOn
8 C. Xia, Z. Wang, T. Shi, and X. He, “An improved control strategy of triple line-voltage cascaded voltage source converter based on proportional–resonant controller,” IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2894-2908, Jul. 2013.   DOI   ScienceOn
9 Z. Li, Y. Li, P. Wang, and H. Zhu, “Control of three-phase boost-type PWM rectifier in stationary frame under unbalanced input voltage,” IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2521-2530, Oct. 2010.   DOI   ScienceOn
10 F. Zhang and J. Xu, “A novel PCCM boost PFC converter with fast dynamic response,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4207-4216, Sep. 2011.   DOI   ScienceOn
11 C. Qiao and K. M. Smedley, “Three-phase unity-power-factor star-connected switch (VIENNA) rectifier with unified constant-frequency integration control,” IEEE Trans. Power Electron., Vol. 18, No. 4, pp. 952-957, Jul. 2003.   DOI   ScienceOn
12 C. Xia, M. Wang, Z. Song, and T. Liu, “Robust model predictive current control of three-phase voltage source PWM rectifier with online disturbance observation,” IEEE Trans. Ind. Informat., Vol. 8, No. 3, pp. 459-471, Aug. 2012.   DOI   ScienceOn
13 M. Beltrao de Rossiter Correa, C. B. Jacobina, E. R. C. da Silva, and A. M. N. Lima, “A general PWM strategy for four-switch three-phase inverters,” IEEE Trans. Power Electron., Vol. 21, No. 6, pp. 1618-1627, Nov. 2006.   DOI   ScienceOn
14 J. Klima, J. Skramlik, and V. Valouch, “An analytical modeling of three-phase four-switch PWM rectifier under unbalanced supply conditions,” IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 54, No. 12, pp. 1155-1159, Dec. 2007.   DOI   ScienceOn
15 G. Zhu, X. Ruan, X. Wang, and Z. Yang, “Suppression of the second harmonic current and improvement of the dynamic performance for two-stage single-phase inverters,” in Proc. the CSEE, Vol. 33, No. 12, pp. 72-80, Apr. 2013.
16 J. Matas, M. Castilla, L. G. de Vicu˜na, J. Miret, and J. C. Vasquez, “Virtual impedance loop for droop-controlled single-phase parallel inverters using a second-order general-integrator scheme,” IEEE Trans. Power Electron., Vol. 25, No. 12, pp. 2993-3001, Dec. 2010.   DOI   ScienceOn
17 B.-R. Lin and C.-C. Chen, “Analysis, design and implementation of an interleaved DC/DC converter with series-connected transformers,” Journal of Power Electronics, Vol. 12, No. 4, pp. 643-653, Jul. 2012   DOI   ScienceOn
18 F. Ma, A. Luo, and H. Xiao, “High-power high-efficient and simplified high-frequency switching power supply for electrolytic plating,” in Proc. the CSEE, Vol. 32, No. 21, pp. 71-78, Jul. 2012
19 L. Cheng and Q. Yongyin, “Novel high-power copper electrolytic rectifier based on auto disturbance rejection controller,” International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pp. 58-61, 2011.
20 J. R. Rodriguez, J. Pontt, C. Silva, E. P. Wiechmann, P. W. Hammond, F. W. Santucci, R. Álvarez, R. Musalem, S. Kouro, and P. Lezana, “Large current rectifiers: State of the art and future trends,” IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp.738-746, Jun. 2005   DOI   ScienceOn
21 S.-J. Cheng, Y.-K. Lo, H.-J. Chiu, and S.-W. Kuo, “High-efficiency digital-controlled interleaved power converter for high-power PEM fuel-cell applications,” IEEE Trans. Ind. Electron., Vol. 60, No. 2, pp. 773-780, Feb. 2013.   DOI   ScienceOn
22 D. S. Wijeratne, and G. Moschopoulos, “A three-phase single-stage AC–DC PWM buck-type full-bridge converter: Analysis, design, and characteristics,” IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4201-4214, Oct. 2013.   DOI   ScienceOn
23 Y. Kawaguchi, E. Hiraki, T. Tanaka, and M. Nakaoka, “Basic study of a phase-shifted soft switching high-frequency inverter with boost PFC converter for induction heating,” Journal of Power Electronics, Vol. 8, No. 2, pp.192-199, Apr. 2008.
24 K. Kondo and H. Murakami, “Crystal growth of electrolytic cu foil,” J. Eeletrochem Soc, Vol. 151, No.7, pp. 514-518, 2004.   DOI   ScienceOn
25 K. Raggl, T. Nussbaumer, G. Doerig, J. Biela, J. W. Kolar, “Comprehensive design and optimization of a high-power-density single-phase boost PFC,” IEEE Trans. Ind. Electron., Vol. 56, No. 7, pp. 2574-2587, Jul. 2009.   DOI   ScienceOn