• 제목/요약/키워드: frequency-based method

검색결과 6,108건 처리시간 0.038초

On Wavelet Transform Based Feature Extraction for Speech Recognition Application

  • Kim, Jae-Gil
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권2E호
    • /
    • pp.31-37
    • /
    • 1998
  • This paper proposes a feature extraction method using wavelet transform for speech recognition. Speech recognition system generally carries out the recognition task based on speech features which are usually obtained via time-frequency representations such as Short-Time Fourier Transform (STFT) and Linear Predictive Coding(LPC). In some respects these methods may not be suitable for representing highly complex speech characteristics. They map the speech features with same may not frequency resolutions at all frequencies. Wavelet transform overcomes some of these limitations. Wavelet transform captures signal with fine time resolutions at high frequencies and fine frequency resolutions at low frequencies, which may present a significant advantage when analyzing highly localized speech events. Based on this motivation, this paper investigates the effectiveness of wavelet transform for feature extraction of wavelet transform for feature extraction focused on enhancing speech recognition. The proposed method is implemented using Sampled Continuous Wavelet Transform (SCWT) and its performance is tested on a speaker-independent isolated word recognizer that discerns 50 Korean words. In particular, the effect of mother wavelet employed and number of voices per octave on the performance of proposed method is investigated. Also the influence on the size of mother wavelet on the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is compared with the most prevalent conventional method, MFCC (Mel0frequency Cepstral Coefficient). The experiments show that the recognition performance of the proposed method is better than that of MFCC. But the improvement is marginal while, due to the dimensionality increase, the computational loads of proposed method is substantially greater than that of MFCC.

  • PDF

Resonant Frequency Estimation of Reradiation Interference at MF from Power Transmission Lines Based on Generalized Resonance Theory

  • Bo, Tang;Bin, Chen;Zhibin, Zhao;Zheng, Xiao;Shuang, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1144-1153
    • /
    • 2015
  • The resonant mechanism of reradiation interference (RRI) over 1.7MHz from power transmission lines cannot be obtained from IEEE standards, which are based on researches of field intensity. Hence, the resonance is ignored in National Standards of protecting distance between UHV power lines and radio stations in China, which would result in an excessive redundancy of protecting distance. Therefore, based on the generalized resonance theory, we proposed the idea of applying model-based parameter estimation (MBPE) to estimate the generalized resonance frequency of electrically large scattering objects. We also deduced equation expressions of the generalized resonance frequency and its quality factor Q in a lossy open electromagnetic system, i.e. an antenna-transmission line system in this paper. Taking the frequency band studied by IEEE and the frequency band over 1.7 MHz as object, we established three models of the RRI from transmission lines, namely the simplified line model, the tower line model considering cross arms and the line-surface mixed model. With the models, we calculated the scattering field of sampling points with equal intervals using method of moments, and then inferred expressions of Padé rational function. After calculating the zero-pole points of the Padé rational function, we eventually got the estimation of the RRI’s generalized resonant frequency. Our case studies indicate that the proposed estimation method is effective for predicting the generalized resonant frequency of RRI in medium frequency (MF, 0.3~3 MHz) band over 1.7 MHz, which expands the frequency band studied by IEEE.

An experimental method to determine glass elastic modulus based on the fundamental frequency of the elastic support-free end beam

  • Kun Jiang;Danguang Pan
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.189-200
    • /
    • 2023
  • Silicate glass is usually a brittle and plate-like material, and it is difficult to measure the elastic modulus by the traditional method. This paper develops a test method for the glass elastic modulus based on the fundamental frequency of the cantilever beam with an elastic support and a free end. The method installs the beam-type specimen on a semi-rigid support to form an elastic support-free end beam. The analytic solution of the stiffness coefficients of the elastic support is developed by the fundamental frequency of the two specimens with known elastic modulus. Then, the glass elastic modulus is measured by the fundamental frequency of the specimens. The method significantly improves the measurement accuracy and is suitable for the elastic modulus with the beam-type specimen whether the glass is homogeneous or not. Several tests on the elastic modulus measurement are conducted to demonstrate the reliability and validity of the test method.

주파수 변동시 불평형 전압에 강인한 DSC-PLL 설계 연구 (The Design of Robust DSC-PLL under Distorted Grid Voltage Contained Unbalance on Frequency Variation)

  • 이재도;차한주
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1447-1454
    • /
    • 2018
  • In this paper, the design of robust DSC-PLL(Delayed Signal Cancellation Phase Locked Loop) is proposed for coping with frequency variation. This method shows significant performance for detection of fundamental positive sequence component voltage when the grid voltage is polluted by grid unbalance and frequency variation. The feedback frequency estimation of DSC-PLL is tracking the drift in the phase by unbalance and frequency variation. The robust DSC PLL is to present the analysis on method and performance under frequency variations. These compensation algorithms can correct for discrepancies of changing the frequency within maximum 193[ms] and improve traditional DSC-PLL. Linear interpolation method is adopted to reduce the discretized errors in the digital implementation of the PLL. For verification of robust characteristic, PLL methods are implemented on FPGA with a discrete fixed point based. The proposed method is validated by both Matlab/Simulink and experimental results based on FPGA(XC7Z030).

Ringing Frequency Extraction Method Based on EMD and FFT for Health Monitoring of Power Transistors

  • Ren, Lei;Gong, Chunying
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.307-315
    • /
    • 2019
  • Condition monitoring has been recognized as an effective and low-cost method to enhance the reliability and improve the maintainability of power electronic converters. In power electronic converters, high-frequency oscillation occurs during the switching transients of power transistors, which is known as ringing. The ringing frequency mainly depends on the values of the parasitic capacitance and stray inductance in the oscillation loop. Although circuit stray inductance is an important factor that leads to the ringing, it does not change with transistor aging. A shift in either the inside inductance or junction capacitance is an important failure precursor for power transistors. Therefore, ringing frequency can be used to monitor the health of power transistors. However, the switching actions of power transistors usually result in a dynamic behavior that can generate oscillation signals mixed with background noise, which makes it hard to directly extract the ringing frequency. A frequency extraction method based on empirical mode decomposition (EMD) and Fast Fourier transformation (FFT) is proposed in this paper. The proposed method is simple and has a high precision. Simulation results are given to verify the ringing analysis and experimental results are given to verify the effectiveness of the proposed method.

Blind modal identification of output-only non-proportionally-damped structures by time-frequency complex independent component analysis

  • Nagarajaiah, Satish;Yang, Yongchao
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.81-97
    • /
    • 2015
  • Recently, a new output-only modal identification method based on time-frequency independent component analysis (ICA) has been developed by the authors and shown to be useful for even highly-damped structures. In many cases, it is of interest to identify the complex modes of structures with non-proportional damping. This study extends the time-frequency ICA based method to a complex ICA formulation for output-only modal identification of non-proportionally-damped structures. The connection is established between complex ICA model and the complex-valued modal expansion with sparse time-frequency representation, thereby blindly separating the measured structural responses into the complex mode matrix and complex-valued modal responses. Numerical simulation on a non-proportionally-damped system, laboratory experiment on a highly-damped three-story frame, and a real-world highly-damped base-isolated structure identification example demonstrate the capability of the time-frequency complex ICA method for identification of structures with complex modes in a straightforward and efficient manner.

폐루프 공진 주파수를 이용한 모델 개선법 (Model Updating Using the Closed-loop Natural Frequency)

  • 정훈상;박영진
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.801-810
    • /
    • 2004
  • Parameter modification of a linear finite element model(FEM) based on modal sensitivity matrix is usually performed through an effort to match FEM modal data to experimental ones. However, there are cases where this method can't be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to overcome the problems associated with the conventional method based on modal sensitivity matrix. We proposed the whole procedure of parameter modification using the closed-loop natural frequency data including the modal sensitivity modification and controller design method. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter estimation based on time-domain input/output data is provided to demonstrate the estimation performance of the proposed method.

A Multi-bit VCO-based Linear Quantizer with Frequency-to-current Feedback using a Switched-capacitor Structure

  • Park, Sangyong;Ryu, Hyuk;Sung, Eun-Taek;Baek, Donghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권3호
    • /
    • pp.145-148
    • /
    • 2015
  • In this letter, we present a new linearization method for a voltage controlled oscillator (VCO)-based quantizer in an analog-to-digital converter (ADC). The nonlinearity of the VCO generates unwanted harmonic spurs and reduces the signal-to-noise and distortion ratio (SNDR) of the VCO-based quantizer. This letter suggests a frequency-to-current feedback method to effectively suppress harmonic distortion. The proposed method decreases the harmonic spurs by more than 53 dB. And a VCO-based quantizer employing the proposed linearization method achieves a high SNDR of 74.1 dB.

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권2호
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

금융시계열 변동성 측정 방법의 비교 분석: 고빈도 자료 및 융합 방법 (Volatility Computations for Financial Time Series: High Frequency and Hybrid Method)

  • 윤재은;황선영
    • 응용통계연구
    • /
    • 제28권6호
    • /
    • pp.1163-1170
    • /
    • 2015
  • 본 연구에서는 금융시계열 변동성 측정을 위한 다양한 방법들을 소개하고 비교분석 하였다. 최근 들어 활발한 연구가 이루어지고 있는 고빈도(high frequency) 자료에 기초한 변동성 측정방법을 국내 주가에 적용시켜 1분 단위 고빈도 주가로부터 일별 변동성을 계산하였다. 또한, 모형 기반 방법인 GARCH와 자료 기반 방법인 역사적 변동성(historical volatility)을 융합하여 새로운 변동성 측정법을 제안하였다.