• Title/Summary/Keyword: fractional derivatives

Search Result 72, Processing Time 0.035 seconds

FRACTIONAL INEQUALITIES FOR SOME EXPONENTIALLY CONVEX FUNCTIONS

  • Mehreen, Naila;Anwar, Matloob
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.653-665
    • /
    • 2020
  • In this paper, we establish new integral inequalities via Riemann-Liouville fractional integrals and Katugampola fractional integrals for the class of functions whose derivatives in absolute value are exponentially convex functions and exponentially s-convex functions in the second sense.

A STUDY OF THE RIGHT LOCAL GENERAL TRUNCATED M-FRACTIONAL DERIVATIVE

  • Chauhan, Rajendrakumar B.;Chudasama, Meera H.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.503-520
    • /
    • 2022
  • We introduce a new type of fractional derivative, which we call as the right local general truncated M-fractional derivative for α-differentiable functions that generalizes the fractional derivative type introduced by Anastassiou. This newly defined operator generalizes the standard properties and results of the integer order calculus viz. the Rolle's theorem, the mean value theorem and its extension, inverse property, the fundamental theorem of calculus and the theorem of integration by parts. Then we represent a relation of the newly defined fractional derivative with known fractional derivative and in context with this derivative a physical problem, Kirchoff's voltage law, is generalized. Also, the importance of this newly defined operator with respect to the flexibility in the parametric values is described via the comparison of the solutions in the graphs using MATLAB software.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR A COUPLED SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.773-785
    • /
    • 2012
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solutions to a general class of three-point boundary value problems for a coupled system of nonlinear fractional differential equations. The differential operator is taken in the Caputo fractional derivatives. By using Green's function, we transform the derivative systems into equivalent integral systems. The existence is based on Schauder fixed point theorem and contraction mapping principle. Finally, some examples are given to show the applicability of our results.

Existence and Uniqueness of Solutions of Fractional Differential Equations with Deviating Arguments under Integral Boundary Conditions

  • Dhaigude, Dnyanoba;Rizqan, Bakr
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.191-202
    • /
    • 2019
  • The aim of this paper is to develop a monotone iterative technique by introducing upper and lower solutions to Riemann-Liouville fractional differential equations with deviating arguments and integral boundary conditions. As an application of this technique, existence and uniqueness results are obtained.

SOME INTEGRAL INEQUALITIES IN THE FRAMEWORK OF GENERALIZED K-PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS WITH GENERAL KERNEL

  • Valdes, Juan E. Napoles
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.587-596
    • /
    • 2021
  • In this article, using the concept proposed reciently by the author, of a Generalized k-Proportional Fractional Integral Operators with General Kernel, new integral inequalities are obtained for convex functions. It is shown that several known results are particular cases of the proposed inequalities and in the end new directions of work are provided.

FRACTIONAL POLYNOMIAL METHOD FOR SOLVING FRACTIONAL ORDER POPULATION GROWTH MODEL

  • Krishnarajulu, Krishnaveni;Krithivasan, Kannan;Sevugan, Raja Balachandar
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.869-878
    • /
    • 2016
  • This paper presents an ecient fractional shifted Legendre polynomial method to solve the fractional Volterra's model for population growth model. The fractional derivatives are described based on the Caputo sense by using Riemann-Liouville fractional integral operator. The theoretical analysis, such as convergence analysis and error bound for the proposed technique has been demonstrated. In applications, the reliability of the technique is demonstrated by the error function based on the accuracy of the approximate solution. The numerical applications have provided the eciency of the method with dierent coecients of the population growth model. Finally, the obtained results reveal that the proposed technique is very convenient and quite accurate to such considered problems.

SOME FAMILIES OF INFINITE SERIES SUMMABLE VIA FRACTIONAL CALCULUS OPERATORS

  • Tu, Shih-Tong;Wang, Pin-Yu;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.111-125
    • /
    • 2002
  • Many different families of infinite series were recently observed to be summable in closed forms by means of certain operators of fractional calculus(that is, calculus of integrals and derivatives of any arbitrary real or complex order). In this sequel to some of these recent investigations, the authors present yet another instance of applications of certain fractional calculus operators. Alternative derivations without using these fractional calculus operators are shown to lead naturally a family of analogous infinite sums involving hypergeometric functions.

  • PDF

A New Analytical Series Solution with Convergence for Nonlinear Fractional Lienard's Equations with Caputo Fractional Derivative

  • Khalouta, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.583-593
    • /
    • 2022
  • Lienard's equations are important nonlinear differential equations with application in many areas of applied mathematics. In the present article, a new approach known as the modified fractional Taylor series method (MFTSM) is proposed to solve the nonlinear fractional Lienard equations with Caputo fractional derivatives, and the convergence of this method is established. Numerical examples are given to verify our theoretical results and to illustrate the accuracy and effectiveness of the method. The results obtained show the reliability and efficiency of the MFTSM, suggesting that it can be used to solve other types of nonlinear fractional differential equations that arise in modeling different physical problems.

FURTHER HYPERGEOMETRIC IDENTITIES DEDUCIBLE BY FRACTIONAL CALCULUS

  • Gaboury, Sebastien;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.429-437
    • /
    • 2014
  • Motivated by the recent investigations of several authors, in this paper we present a generalization of a result obtained recently by Choi et al. ([3]) involving hypergeometric identities. The result is obtained by suitably applying fractional calculus method to a generalization of the hypergeometric transformation formula due to Kummer.

SOME COMPOSITION FORMULAS OF JACOBI TYPE ORTHOGONAL POLYNOMIALS

  • Malik, Pradeep;Mondal, Saiful R.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.677-688
    • /
    • 2017
  • The composition of Jacobi type finite classes of the classical orthogonal polynomials with two generalized Riemann-Liouville fractional derivatives are considered. The outcomes are expressed in terms of generalized Wright function or generalized hypergeometric function. Similar composition formulas are also obtained by considering the generalized Riemann-Liouville and $Erd{\acute{e}}yi-Kober$ fractional integral operators.