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A STUDY OF THE RIGHT LOCAL GENERAL TRUNCATED

M-FRACTIONAL DERIVATIVE

Rajendrakumar B. Chauhan and Meera H. Chudasama

Abstract. We introduce a new type of fractional derivative, which we

call as the right local general truncated M -fractional derivative for α-
differentiable functions that generalizes the fractional derivative type in-

troduced by Anastassiou. This newly defined operator generalizes the
standard properties and results of the integer order calculus viz. the

Rolle’s theorem, the mean value theorem and its extension, inverse prop-

erty, the fundamental theorem of calculus and the theorem of integration
by parts. Then we represent a relation of the newly defined fractional

derivative with known fractional derivative and in context with this de-

rivative a physical problem, Kirchoff’s voltage law, is generalized. Also,
the importance of this newly defined operator with respect to the flex-

ibility in the parametric values is described via the comparison of the

solutions in the graphs using MATLAB software.

1. Introduction

The study of non-integer order calculus was discovered in 1695 by L’Hospital
and Leibniz [7]. Due to its vast applications in the fields like engineering, sci-
ences etc., it has become more popular and interesting among the researchers.
The various types of fractional derivatives and integrals have been defined and
investigated through the unification of the classical integration and differenti-
ation.

Many varieties of fractional derivatives have been introduced, amongst which
the Riemann-Liouville, Caputo, Hadamard, Caputo-Hadamard, Grünwald-
Letnikov, Riesz and other types [9, 10] are worth mentioning. Most of them
have the background of the corresponding fractional integral in the Riemann-
Liouville sense. But they are non local and they do not have the fundamental
assets of the ordinary differentiations.

To overcome this, Khalil et al. [6], Katugampola [5], Sousa and Oliveira
[14] and Anastassiou [2] have worked in this direction and gave the following
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fractional derivatives in terms of the conformable sense which encompasses the
classical properties of integer order calculus. Khalil et al. [6] defined the right
conformable fractional derivative of order α as:

Definition 1. Let f : (−∞, b] → R, b ∈ R. Then the right conformable
fractional derivative terminating at b of a function f of order α, α ∈ (0, 1), is
given by

T
(α)
b f(t) = − lim

ξ→0

f(t+ ξ(b− t)1−α)− f(t)

ξ
.(1)

If T
(α)
b f(t) exists on (a, b), a < b and lim

t→b−
T

(α)
b f(t) exists, then T

(α)
b f(b) =

lim
t→b−

T
(α)
b f(t).

Many of the researchers have studied the conformable fractional derivative
with various applications [1, 4]. Moreover, in 2014, Katugampola [5] has pro-
posed a new fractional derivative with classical properties similar to the con-
formable fractional derivative as follows:

Definition 2. Let f : [0,∞) → R. Then the alternative fractional derivative
of order α is defined as

Dαf(t) = lim
ξ→0

f(t eξt
−α

)− f(t)

ξ
(2)

for all t > 0 and α ∈ (0, 1).

In 2017, Sousa and Oliveira [14] have defined a generalization of the usual
definition of a derivative as follows:

Definition 3. Let f : [0,∞)→ R. Then for all t > 0 and α ∈ (0, 1), the local
M -derivative of order α of f is defined as

Dα,βM f(t) = lim
ξ→0

f (t Eβ (ξt−α))− f(t)

ξ
,(3)

where Eβ(·), β > 0 is the Mittag-Leffler function with one parameter [3, 8].

Sousa and Oliveira [12,13] have defined the truncatedM -fractional derivative
with the aid of the truncated Mittag-Leffler function of one parameter defined
by

iEβ(z) =

i∑
k=0

zk

Γ(βk + 1)
,(4)

with β > 0 and z ∈ C as follows:

Definition 4. Let f : [0,∞) → R. Then for all t > 0 and α ∈ (0, 1), a
truncated M -fractional derivative of order α of f is defined as

iDα,βM f(t) = lim
ξ→0

f (t iEβ (ξt−α))− f(t)

ξ
,(5)
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where iEβ(·), β > 0 is a truncated Mittag-Leffler function with one parameter.

As a generalization of a truncated M -fractional derivative, Sousa and Oliveira
have defined a truncated ν-fractional derivative [13]. In 2019, Anastassiou [2]
has defined the right local general M -fractional derivative as follows:

Definition 5. Let f : (−∞, b]→ R and t < b, b ∈ R. For α ∈ (0, 1], the right
local general M -fractional derivative of order α of f is defined as

Dα,β
M,bf(t) = − lim

ξ→0

f (t Eβ (ξ(b− t)−α))− f(t)

ξ
,(6)

where Eβ(·), β > 0 is a Mittag-Leffler function with one parameter.

By focusing on all these definitions, we now generalize the right local general
M -fractional derivative given in (6) by adding a flavour of truncated Mittag-
leffler function (4).

2. Main results

In this section, we first introduce the new structure of the fractional deriv-
ative using which the various results having likeness to the results of classical
calculus are obtained. We begin with the following definition, which is the
generalization of (6).

Definition 6. Let f : (−∞, b] → R and t < b, b ∈ R. For 0 < α ≤ 1, we
define the right local general truncated M -fractional derivative of order α of f
(α-RLGT M -fractional derivative) as

iD
α,β
M,bf(t) := − lim

ξ→0

f (t iEβ(ξ(b− t)−α))− f(t)

ξ
,(7)

where iEβ(·) is the truncated Mittag-Leffler function of one parameter as de-
fined in (4).

Taking the limit i→∞ on both the sides of (7), we get

∞Dα,β
M,bf(t) = − lim

ξ→0

f (t ∞Eβ(ξ(b− t)−α))− f(t)

ξ
.

But from (4)

∞Eβ
(
ξ(b− t)−α

)
=

∞∑
k=0

(ξ(b− t)−α)k

Γ(βk + 1)
= Eβ(ξ(b− t)−α).

Thus, we conclude that

(8) ∞Dα,β
M,bf(t) = − lim

ξ→0

f (t Eβ(ξ(b− t)−α))− f(t)

ξ
= Dα,β

M,bf(t),

which is the right local general M -fractional derivative given in (6).
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Now, if α-RLGT M -fractional derivative exists in some open interval (δ, b),

δ ∈ R, δ < b and lim
t→b−

iD
α,β
M,bf(t) exists, then

(9) iD
α,β
M,bf(b) = lim

t→b−
iD

α,β
M,bf(t).

Next, we try to establish the generalization of the result “Every differentiable
function is continuous.” in the following theorem in context of α-RLGT M -
fractional derivative.

Theorem 2.1. If a function f : (∞, b] → R is α-RLGT M -fractional differ-
entiable at t0, t0 < b, then f is continuous at t0.

Proof. For ξ 6= 0, consider

−
[
f
(
t0 iEβ(ξ(b− t0)−α)

)
− f(t0)

]
= −

(
f (t0 iEβ(ξ(b− t0)−α))− f(t0)

ξ

)
ξ.(10)

Now, applying the limit ξ → 0 on both the sides of (10), we have

− lim
ξ→0

(
f
(
t0 iEβ(ξ(b− t0)−α)

)
− f(t0)

)
= − lim

ξ→0

(
f (t0 iEβ(ξ(b− t0)−α))− f(t0)

ξ

)
× lim
ξ→0

ξ

= iD
α,β
M,bf(t0) lim

ξ→0
ξ

= 0.

Hence, f is continuous at t0. �

Using the truncated Mittag-Leffler function of one parameter, we have the
following lemma.

Lemma 2.2. Let f : (−∞, b] → R be continuous and t < b, b ∈ R. For
0 < α ≤ 1 and β > 0,

lim
ξ→0

f
(
t iEβ(ξ(b− t)−α)

)
= f(t).

Proof. Using (4), we have

(11) f
(
t iEβ(ξ(b− t)−α)

)
= f

(
t

i∑
k=0

(ξ(b− t)−α)k

Γ(βk + 1)

)
.

By applying the limit ξ → 0 on both the sides of (11), continuity of f yields

lim
ξ→0

f
(
t iEβ(ξ(b− t)−α)

)
= lim

ξ→0
f

(
t

i∑
k=0

(ξ(b− t)−α)k

Γ(βk + 1)

)
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= f

(
t lim
ξ→0

i∑
k=0

(ξ(b− t)−α)k

Γ(βk + 1)

)

= f

(
lim
ξ→0

{
t+

t ξ(b− t)−α

Γ(β + 1)
+
t (ξ(b− t)−α)

2

Γ(2β + 1)
+
t (ξ(b− t)−α)

3

Γ(3β + 1)

+ · · ·+ t (ξ(b− t)−α)
i

Γ(iβ + 1)

})
= f(t). �

In the next theorem, a relation between α-RLGT M -fractional derivative and
classical derivative is obtained.

Theorem 2.3. If f : (−∞, b] → R has the α-RLGT M -fractional derivative
at t, t < b with β > 0, then

(12) iD
α,β
M,bf(t) = − t(b− t)

−α

Γ(β + 1)
f ′(t).

Proof. For t < b, from (4), we have

t iEβ
(
ξ(b− t)−α

)
= t+

t ξ(b− t)−α

Γ(β + 1)
+
t (ξ(b− t)−α)

2

Γ(2β + 1)
+
t (ξ(b− t)−α)

3

Γ(3β + 1)

+ · · ·+ t (ξ(b− t)−α)
i

Γ(iβ + 1)

= t+
t ξ(b− t)−α

Γ(β + 1)
+O(ξ2).(13)

Let

h := t ξ(b− t)−α
(

1

Γ(β + 1)
+O(ξ2)

)
.(14)

Then

ξ =
h

t(b− t)−α
(

1
Γ(β+1) +O(ξ2)

)
=

h (b− t)αΓ(β + 1)

t (1 + Γ(β + 1)O(ξ2))
.

Now, from Definition 6 and (13), we have

iD
α,β
M,bf(t) = − lim

ξ→0

f
(
t+ t ξ(b−t)−α

Γ(β+1) +O(ξ2)
)
− f(t)

ξ
.

Then from (14), the above expression becomes

iD
α,β
M,bf(t) = − lim

ξ→0

f(t+ h)− f(t)

ξ
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= − lim
ξ→0

(f(t+ h)− f(t))
(
t
(
1 + Γ(β + 1)O(ξ2)

))
h(b− t)αΓ(β + 1)

= − t(b− t)
−α

Γ(β + 1)

[
lim
ξ→0

(
f(t+ h)− f(t)

h

)
lim
ξ→0

(
1 + Γ(β + 1)O(ξ2)

)]
= − t(b− t)

−α

Γ(β + 1)
f ′(t) as if ξ → 0, then h→ 0.

�

Remark 2.4. From Theorem 2.3, if f(t) = c, where c is any constant, then

iD
α,β
M,bf(t) = 0 as f ′(t) = 0.

Remark 2.5. For α = 1, b = 0 and β = 0 or 1, (12) becomes iD
α,β
M,bf(t) = −f ′(t).

Now, we will derive a theorem that encompasses the classical properties of
integer order derivatives.

Theorem 2.6. Let f1, f2 : (−∞, b] → R be α-RLGT M -fractional differen-
tiable at t, t < b, µ1, µ2 ∈ R and β > 0. Then

(1) iD
α,β
M,b(µ1f1 + µ2f2)(t) = µ1 iD

α,β
M,bf1(t) + µ2 iD

α,β
M,bf2(t).

(2) iD
α,β
M,b(f1 · f2)(t) = f1(t) iD

α,β
M,bf2(t) + f2(t) iD

α,β
M,bf1(t).

(3) iD
α,β
M,b

(
f1

f2

)
(t) =

f2(t) iD
α,β
M,bf1(t)−f1(t) iD

α,β
M,bf2(t)

[f2(t)]2 .

(4) iD
α,β
M,b(k) = 0, where k is a constant.

(5) If f1(t) is differentiable at f2(t), then

iD
α,β
M,b(f1of2)(t) = f

′

1(f2(t)) iD
α,β
M,bf2(t).

Proof. (1) From Definition 6, we have

iD
α,β
M,b(µ1f1 + µ2f2)(t)

= − lim
ξ→0

(
(µ1f1 + µ2f2)(t iEβ(ξ(b− t)−α))− (µ1f1 + µ2f2)(t)

ξ

)
= − lim

ξ→0

(
µ1 f1(t iEβ(ξ(b− t)−α)) + µ2 f2(t iEβ(ξ(b− t)−α))− µ1f1(t)− µ2f2(t)

ξ

)
= −

(
lim
ξ→0

µ1 f1(t iEβ(ξ(b− t)−α))− µ1f1(t)

ξ

)
+

(
−
(

lim
ξ→0

µ2 f2(t iEβ(ξ(b− t)−α))− µ2f2(t)

ξ

))
= µ1 iD

α,β
M,bf1(t) + µ2 iD

α,β
M,bf2(t).

(2) From Definition 6, we have

iD
α,β
M,b(f1 · f2)(t)

= − lim
ξ→0

f1(t iEβ(ξ(b− t)−α)) · f2(t iEβ(ξ(b− t)−α))− f1(t) · f2(t)

ξ
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= − lim
ξ→0

{
f1(t iEβ(ξ(b− t)−α)) · f2(t iEβ(ξ(b− t)−α))− f1(t) · f2(t)

+f1(t)f2(t iEβ(ξ(b− t)−α))− f1(t)f2(t iEβ(ξ(b− t)−α))

}
/ξ

=

(
− lim
ξ→0

f1(t iEβ(ξ(b− t)−α))− f1(t)

ξ

)
lim
ξ→0

f2(t iEβ(ξ(b− t)−α))

+

(
− lim
ξ→0

f2(t iEβ(ξ(b− t)−α))− f2(t)

ξ

)
lim
ξ→0

f1(t).

Using Lemma 2.2 and from Definition 6, we have

iD
α,β
M,b(f1 · f2)(t) = iD

α,β
M,bf1(t) f2(t) +i D

α,β
M,bf2(t) f1(t)

= f1(t) iD
α,β
M,bf2(t) + f2(t) iD

α,β
M,bf1(t).

(3) Again with the aid of Definition 6, we have

iD
α,β
M,b

(
f1

f2

)
(t)

= − lim
ξ→0

f1(t iEβ(ξ(b−t)−α))
f2(t iEβ(ξ(b−t)−α)) −

f1(t)
f2(t)

ξ

= − lim
ξ→0

f2(t) f1(t iEβ(ξ(b− t)−α))− f1(t) f2(t iEβ(ξ(b− t)−α))

ξf2(t iEβ(ξ(b− t)−α)) f2(t)

− lim
ξ→0

f1(t)f2(t)

ξf2(t iEβ(ξ(b− t)−α)) f2(t)
+ lim
ξ→0

f1(t)f2(t)

ξf2(t iEβ(ξ(b− t)−α)) f2(t)

=

− lim
ξ→0

f2(t)(f1(t iEβ(ξ(b−t)−α))−f1(t))
ξ − lim

ξ→0

f1(t)(f2(t iEβ(ξ(b−t)−α))−f2(t))
ξ

lim
ξ→0

f2(t iEβ(ξ(b− t)−α))f2(t)

=
f2(t) iD

α,β
M,bf1(t)− f1(t) iD

α,β
M,bf2(t)

[f2(t)]2
as lim

ξ→0
f2

(
t iEβ(ξ(b− t)−α)

)
= f2(t).

(4) In this case, the proof is directly follows from Remark 2.4.
(5) This result is proved in two cases: (I) f2 is constant and (II) f2 is non-

constant.
Case-I: Let f2(t) = c, where c is any constant.
Then from Remark 2.4, we have

iD
α,β
M,b (f1of2)(c) = iD

α,β
M,b f1(f2(t)) = iD

α,β
M,b f1(c) = 0.

Case-II: Let f2 be not a constant in the neighborhood of c.
Since f2 is continuous at c, for ξ to be small enough, we have

iD
α,β
M,b(f1of2)(c)

= − lim
ξ→0

f1(f2(c iEβ(ξ(b− t)−α)))− f1(f2(c))

ξ
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= − lim
ξ→0

f1(f2(c iEβ(ξ(b− t)−α)))− f1(f2(c))

ξ

f2(c iEβ(ξ(b− t)−α))− f2(c)

f2(c iEβ(ξ(b− t)−α))− f2(c)

= − lim
ξ→0

f1(f2(c iEβ(ξ(b− t)−α)))− f1(f2(c))

f2(c iEβ(ξ(b− t)−α))− f2(c)

× lim
ξ→0

f2(c iEβ(ξ(b− t)−α))− f2(c)

ξ
.

Now, let

ξ1 = f2(c iEβ(ξ(b− t)−α))− f2(c).

Then

f2(c iEβ(ξ(b− t)−α)) = ξ1 + f2(c).

Also, it is observed that if ξ → 0, then ξ1 → 0.
Therefore,

iD
α,β
M,b(f1of2)(c)

= lim
ξ1→0

f1(f2(c) + ξ1)− f1(f2(c))

ξ1
×− lim

ξ→0

f2(c iEβ(ξ(b− t)−α))− f2(c)

ξ

= f
′

1(f2(c)) iD
α,β
M,bf2(c).

Hence,

iD
α,β
M,b(f1of2)(t) = f

′

1(f2(t)) iD
α,β
M,bf2(t). �

Now, as a consequence of Theorem 2.3, we have the following α-RLGT M -
fractional derivatives of various functions.

Theorem 2.7. Let µ ∈ R, β > 0, α ∈ (0, 1] and t < b. Then

(1) iD
α,β
M,b(1) = 0;

(2) iD
α,β
M,b(e

µt) = − t(b−t)
−α

Γ(β+1) µ e
µt;

(3) iD
α,β
M,b(sinµt) = − t(b−t)

−α

Γ(β+1) µ cosµt;

(4) iD
α,β
M,b(cosµt) = t(b−t)−α

Γ(β+1) µ sinµt;

(5) iD
α,β
M,b(t

µ) = − t(b−t)
−α

Γ(β+1) µt
µ−1 = − (b−t)−αµ tµ

Γ(β+1) .

Proof. The proof is directly follows from Theorem 2.3. �

2.1. Generalization of fundamental results of calculus through α-
RLGT M-fractional derivative

Further, we have observed that the α-RLGT M -fractional derivative also
has various important theorems similar to the classical integer order calculus.
We have derived the Rolle’s theorem, the mean value theorem and its extension
using this newly defined fractional derivative in the next three theorems.

Theorem 2.8. Let f : [γ, ρ]→ R, where ρ < b. If
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(1) f is continuous on [γ, ρ],
(2) f is α-RLGT M -fractional differentiable on (γ, ρ),
(3) f(γ) = f(ρ),

then there exists c ∈ (γ, ρ) such that iD
α,β
M,bf(c) = 0, β > 0.

Proof. We will prove this theorem in three cases:

Case-I: When f(x) = k on [γ, ρ], where k is any constant.

Then from Remark 2.4, iD
α,β
M,af(x) = 0 for all x ∈ [γ, ρ]. That is, in other

words, we can say that there exists c ∈ (γ, ρ) such that

iD
α,β
M,bf(c) = 0.

Case-II: Let f be non-constant. In this case, suppose that there is some
d ∈ (γ, ρ) such that f(d) > f(γ).
Since f is continuous on [γ, ρ], by the extreme value theorem [11], f(x) has
maximum in [γ, ρ]. Also, as f(γ) = f(ρ) and f(d) > f(γ), we have the maxi-
mum value of f at some c in (γ, ρ). Here, c occurs in the interior of the interval
means that f(x) has relative maximum at x = c and by the second hypothesis,

iD
α,β
M,bf(x) exists. Therefore, iD

α,β
M,bf(c) = 0.

Case-III: Let f be non-constant, but in this case, suppose that there is some
d ∈ (γ, ρ) such that f(d) < f(γ).
Now, in the similar manner of Case-II, by extreme value theorem [11], f(x)
has minimum in [γ, ρ]. Also, as f(γ) = f(ρ) and f(d) < f(γ), we have the

minimum value of f at some c in (γ, ρ). Hence, iD
α,β
M,bf(c) = 0. �

Theorem 2.9. Let f : [γ, ρ]→ R, where ρ < b, 0 /∈ [γ, ρ]. If

(1) f is continuous on [γ, ρ],
(2) f is α-RLGT M -fractional differentiable on (γ, ρ),

then there exists c ∈ (γ, ρ) such that

(15)
f(ρ)− f(γ)

ρ− γ
=
(
−iDα,β

M,bf(c)
) Γ(β + 1)(b− c)α

c
.

Proof. For x ∈ [γ, ρ], consider

g(x) := f(x)− f(γ)−
(
f(ρ)− f(γ)

ρ− γ

)
(x− γ).(16)

Since f is continuous on [ρ, γ], g is continuous on [ρ, γ] too. Also, it can be
easily verified that g(γ) = 0 = g(ρ). Therefore, from Theorem 2.6, we can say
that g is α-RLGT M -fractional differentiable on (γ, ρ).

Now, from Theorem 2.8, there exists c ∈ (γ, ρ) such that

iD
α,β
M,ag(c) = 0.(17)
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Taking iD
α,β
M,b on both the sides of (16), we get

iD
α,β
M,bg(x) = iD

α,β
M,bf(x)− iD

α,β
M,bf(γ)−

(
f(ρ)− f(γ)

ρ− γ

)
iD

α,β
M,b(x− γ).

Applying Theorem 2.3 by taking f to be linear function, we obtain

iD
α,β
M,bg(x) = iD

α,β
M,bf(x)− iD

α,β
M,bf(γ) +

(
f(ρ)− f(γ)

ρ− γ

)
x(b− x)−α

Γ(β + 1)
.

Whence at x = c,

iD
α,β
M,bg(c) = iD

α,β
M,bf(c)− iD

α,β
M,bf(γ) +

(
f(ρ)− f(γ)

ρ− γ

)
c(b− c)−α

Γ(β + 1)
.

Then using (17), we get

iD
α,β
M,bf(c)− 0 +

(
f(ρ)− f(γ)

ρ− γ

)
c(b− c)−α

Γ(β + 1)
= 0.

Therefore,

iD
α,β
M,bf(c) = −

(
f(ρ)− f(γ)

ρ− γ

)
c(b− c)−α

Γ(β + 1)
.

Hence,

f(ρ)− f(γ)

ρ− γ
=
(
−iDα,β

M,bf(c)
) Γ(β + 1)(b− c)α

c
.

�

Theorem 2.10. Let ρ < b, 0 /∈ [γ, ρ] and f1, f2 : [γ, ρ]→ R. If

(1) f1, f2 are continuous on [γ, ρ] and f2(γ) 6= f2(ρ),
(2) f1, f2 is α-RLGT M -fractional differentiable on (γ, ρ),

then there exists c ∈ (γ, ρ) such that

iD
α,β
M,bf1(c)

iD
α,β
M,bf2(c)

=
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)
with β > 0.

Proof. For x ∈ [γ, ρ], define

(18) G(x) := f1(x)− f2(γ)−
(
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)
(f2(x)− f2(γ)).

Since f1, f2 are continuous on [ρ, γ], G is continuous on [ρ, γ] too. Also, it can
be easily seen that G(γ) = 0 = G(ρ). Therefore, from Theorem 2.6, we can say
that f1, f2 are α-RLGT M -fractional differentiable functions on (γ, ρ).

Now, from Theorem 2.8, there exists c ∈ (γ, ρ) such that

iD
α,β
M,bG(c) = 0.(19)

Taking iD
α,β
M,b on both the sides of (18), we get

iD
α,β
M,bG(x) = iD

α,β
M,bf1(x)− iD

α,β
M,bf2(γ)
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−
(
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)
iD

α,β
M,b (f2(x)− f2(γ)) .

Writing the above expression at x = c and then applying Remark 2.4, we obtain

iD
α,β
M,bG(c) = iD

α,β
M,bf1(c)− 0−

(
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)
iD

α,β
M,bf2(c)− 0,

which implies from (19) as

iD
α,β
M,bf1(c)−

(
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)
iD

α,β
M,bf2(c) = 0.

Therefore,

iD
α,β
M,bf1(c)

iD
α,β
M,bf2(c)

=
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)
.

�

Definition 7. Let β > 0, α ∈ (n, n + 1], where n ∈ N ∪ {0} and f is n-times
differentiable for t, t < b. Then the general form of α-RLGT M -fractional
derivative of order α of function f is defined by

iD
α,β;n
M,b f(t) := lim

ξ→0

f (n) (t iEβ(ξ(b− t)n−α))− f (n)(t)

ξ
,(20)

if the limit exists.

Now, from the above definition, Theorem 2.3 and by the principle of math-
ematical induction on n, we have for t < b

iD
α,β;n
M,b f(t) = (−1)n+1 t(b− t)n−α

Γ(β + 1)
f (n+1)(t),(21)

for f to be (n+ 1)-times differentiable.
Further, this α-RLGT M -fractional derivative has a corresponding right M -

integral.

Definition 8. Let t < b and f be a function defined in [t, b) and α ∈ (0, 1].
Then the right M -integral of order α of f is defined by

Iα,βM,bf(t) = Γ(β + 1)

∫ b

t

f(x)

x(b− x)−α
dx,(22)

with β > 0.

In context with the above definition, we have generalized the inverse prop-
erty, fundamental theorem of calculus and the theorem of integration by parts
in the upcoming theorems.

Theorem 2.11. Let b ∈ R, α ∈ (0, 1] and f be a continuous function such that

there exists Iα,βM,bf . Then

iD
α,β
M,b Iα,βM,bf(t) = f(t),(23)

with 0 6= t < b and β > 0.
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Proof. From Theorem 2.3, we have

iD
α,β
M,b

(
Iα,βM,bf(t)

)
= − t(b− t)

−α

Γ(β + 1)

(
Iα,βM,bf(t)

)′
=
t(b− t)−α

Γ(β + 1)

d

dt

(
Γ(β + 1)

∫ t

b

f(x)

x(b− x)−α
dx

)
=
t(b− t)−α

Γ(β + 1)
Γ(β + 1)

f(t)

t(b− t)−α
= f(t). �

Theorem 2.12. Let f : (−∞, b]→ R be a continuously differentiable function

such that iD
α,β
M,bf exists and α ∈ (0, 1]. Then for all t < b,

Iα,βM,b iD
α,β
M,bf(t) = f(t)− f(b),(24)

with β > 0.

Proof. From Definition 8 and then applying Theorem 2.3, we have

Iα,βM,b

(
iD

α,β
M,bf(t)

)
= Γ(β + 1)

∫ b

t

iD
α,β
M,bf(x)

x(b− x)−α
dx

= Γ(β + 1)

∫ b

t

1

x(b− x)−α

(
−x(b− x)−α

Γ(β + 1)
f ′(x)

)
dx

=

∫ t

b

f ′(x) dx

= f(t)− f(b),

by the classical fundamental theorem of calculus. �

It can be easily observed that, if f(b) = 0, then by (24) for all t < b, we have

Iα,βM,b iD
α,β
M,bf(t) = f(t).

Now, for the sake of brevity, we denote

Iα,βM,bf(t) = −
∫ b

t

f(x) dα,β x, where dα,β x = − Γ(β + 1)

x(b− x)−α
dx.

In this notation, we derive the generalization of the integration by parts in the
following theorem for the right M -integral.

Theorem 2.13. Let f1, f2 : [c, d] → R be continuously differentiable and α ∈
(0, 1]. Then∫ d

c

f1(x) iD
α,β
M,bf2(x) dα,βx=[f1(x)f2(x)]dc −

∫ d

c

f2(x) iD
α,β
M,bf1(x)dα,βx, β > 0.
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Proof. In the stated notations,∫ d

c

f1(x) iD
α,β
M,bf2(x) dα,β x

=

∫ d

c

f1(x) iD
α,β
M,bf2(x)

(
− Γ(β + 1)

x(b− x)−α

)
dx

=

∫ d

c

f1(x)

(
−x(b− x)−α

Γ(β + 1)

)
f
′

2(x)

(
− Γ(β + 1)

x(b− x)−α

)
dx,

by Theorem 2.3.
Now, applying the classical integration by parts, we get∫ d

c

f1(x) iD
α,β
M,b f2(x) dα,βx

=

∫ d

c

f1(x) f
′

2(x)dx

= [f1(x)f2(x)]dc −
∫ d

c

f
′

1(x) f2(x) dx

= [f1(x)f2(x)]dc −
∫ d

c

f2(x)

(
−x(b− x)−α

Γ(β + 1)

)
f
′

1(x)

(
− Γ(β + 1)

x(b− x)−α

)
dx

= [f1(x)f2(x)]dc −
∫ d

c

f2(x) iD
α,β
M,b f1(x) dα,βx,

by again using Theorem 2.3. �

The general form of the right M -integral is as follows:

Definition 9. Let t < b and f be a function defined in [t, b) and α ∈ (n, n +
1], n ∈ N ∪ {0}. Then the general right M -integral of order α of f is defined
as

Iα,β;n
M,b f(t) =

Γ(β + 1)

n!

∫ b

t

(x− t)n

x(b− x)n−α
f(x) dx.(25)

Clearly, for n = 0, Iα,β;0
M,b f(t) = Iα,βM,bf(t).

Next, we derive a right fractional Taylor’s theorem with integral remainder
associated to the above definition.

Theorem 2.14. Let f : (−∞, b] → R be (n + 1) times continuously differen-
tiable for t < b with β > 0 and α ∈ (n, n+ 1], n ∈ N. Then for all t < b,

Iα,β;n
M,b

(
iD

α,β;n
M,b f(t)

)
= f(t)−

n∑
k=0

f (k)(b)(t− b)k

k!
.(26)

Proof. From Definition 9, we have
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Iα,β;n
M,b

(
iD

α,β;n
M,b f(t)

)
=

Γ(β + 1)

n!

∫ b

t

(x− t)n

x(b− x)n−α
iD

α,β;n
M,b f(x) dx

=
Γ(β + 1)

n!

∫ b

t

(x− t)n

x(b− x)n−α

(
(−1)n+1 x(b− x)n−α

Γ(β + 1)
f (n+1)(x)

)
dx

=
(−1)n+1

n!

∫ b

t

(x− t)n f (n+1)(x) dx

= − (−1)n+1

n!
(−1)n

∫ t

b

(t− x)n f (n+1)(x) dx

=
1

n!

∫ t

b

(t− x)n f (n+1)(x) dx.

Now, taking one by one integer order integration, we get

Iα,β;n
M,b

(
iD

α,β;n
M,b f(t)

)
= f(t)−

n∑
k=0

f (k)(b)(t− b)k

k!
.

�

3. Application

In this section, we have generalized the Kirchoff’s voltage law in terms of
α-RLGT M -fractional derivative which is represented by

iD
α,β
M,0 I +

R

L
I =

E

L
,(27)

where I is the current with I(0) = I0, R is the resistance, L is the inductance
and E is the emf of the circuit.

Now, with the use of Theorem 2.3 in (27), we have

− dI

dt

t(−t)−α

Γ(β + 1)
+
R

L
I =

E

L
.

Then

dI

dt
+

Γ(β + 1)

(−t)1−α
R

L
I =

Γ(β + 1)

(−t)1−α
E

L
.(28)

Now, we take emf E = 0 and replace t by −t in (28), we get

dI

dt
+

Γ(β + 1)

t1−α
R

L
I = 0,

which is a linear differential equation in I whose integrating factor is given by

I.F. = e
∫ Γ(β+1)

t1−α
R
L dt

= eΓ(β+1)RL
∫
tα−1 dt

= e
R
LαΓ(β+1)tα .
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Therefore the solution is given by

I
(
e
R
LαΓ(β+1)tα

)
= c,

I = c e−
R
LαΓ(β+1)tα ,

where c is an arbitrary constant.
Now, for I(0) = I0, we have

I(t) = I0 e
− R
LαΓ(β+1)tα

= I0

∞∑
k=0

(
− R
LαΓ(β + 1)tα

)k
k!

= I0 E1

(
− R

Lα
Γ(β + 1)tα

)
.

By restricting the parameters α = 1, a = 0 and β = 1 of the α-RLGT M -
fractional derivative and then applying Theorem 2.3, for E = 0, (27) reduces
to the classical Kirchoff’s voltage law

dI

dt
+
R

L
I = 0, I(0) = I0,(29)

whose solution is given by I(t) = I0e
R
L t.

The comparison of the α-RLGT M -fractional derivative with the classical
integer order derivative has been carried out in the following graphs in which
the solid line represents the classical solution whereas the other lines show
the solution corresponds to the α-RLGT M -fractional derivative with different
values of α as shown in the Figures 1, 2 and 3.
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Figure 1. Solutions of (27) for E = 0, β = 2.3, R = 4 Ω,
L = 60 mH and I0 = 10
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Figure 2. Solutions of (27) for E = 0, β = 1.2, R = 4 Ω,
L = 60 mH and I0 = 10
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Figure 3. Solutions of (27) for E = 0, β = −0.5, R = 4 Ω,
L = 60 mH and I0 = 10

4. Conclusion

We have established a new fractional order derivative and its analogue as
the right M -integral. In corresponds with the fractional derivatives, we have
shown that the α-RLGT M -fractional derivatives responds well with respect
to the classical results of the integer order calculus. Additionally, we could
find the associations between the α-RLGT M -fractional derivative and right
M -integral. The well known results of the calculus like the Rolle’s theorem,
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the mean value theorem, the fundamental theorem of calculus and the theo-
rem containing integration by parts are also generalized for our newly defined
fractional derivative.

We have obtained a relation between our newly defined fractional derivative
and the available fractional derivative in the literature hitherto. Also, using the
proved result in the previous sections, we have obtained the generalized ver-
sion of the well known physical problem, Kirchoff’s voltage law, by our newly
defined α-RLGT M -fractional derivative and with the use of MATLAB soft-
ware, we have compared its solution with the ordinary version of the same.
From the Figures 1, 2 and 3 it can be conclude that if any fractional ordered
(α ∈ (0, 1)) physical problem is describe by the α-RLGT M -fractional deriva-
tive, then by assigning appropriate parametric value of the parameter β from
the truncated Mittag-Leffler function, one can easily approach to the existing
ordinary solution.
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