This study investigated how to utilize number line related number concept learning and analyzed problems related utilization of number line focused on natural number and rational number(fraction, decimal), in elementary school mathematics textbook. The purpose of this study is to identify desirable direction about the utilization of number line, based on analysis of the introduction of time, introduction contents and utilization method in elementary school mathematics textbook.
There have been studies reporting the increase in student confidence in mathematics when using technology. However, past studies indicating a positive correlation between technology and confidence in mathematics do not explain why they see this positive outcome. With increased availability and easy access to the Internet in schools and the development of free online virtual manipulatives, this research was interested in how the use of virtual manipulatives in mathematics can affect students confidence in their mathematical abilities. Our hypothesis was that the classes using virtual manipulatives which allows students to connecting dynamic visual image with abstract symbols will help students gain a deeper conceptual understanding of math concept thus increasing their confidence and ability in mathematics. The participants in this study were 46 fifth-grade students in three ability groups: one high, one middle and one low. During a two-week unit on fractions, students in three groups interacted with several virtual manipulative applets in a computer lab. Data sources in the project included a pre and posttest of students mathematics content knowledge, Confidence in Learning Mathematics Scale, field notes and student interviews, and classroom videotapes. Our aim was to find evidence for increased level of confidence in mathematics as students strengthened their understanding of fraction concepts. Results from the achievement score indicated an overall main effect showing significant improvement for all ability groups following the treatment and an increase in the confidence level from the preassessment of the Confidence in Learning Mathematics Scale in the middle and high ability groups. An interesting finding was that the confidence level for the low ability group students who had the highest confidence level in the beginning did not change much in the final confidence scale assessment. In the middle and high ability groups, the confidence level did increase according to the improvement of the contest posttest. Through interviews, students expressed how the virtual manipulatives assisted their understanding by verifying their answers as they worked and facilitated their ability to figure out math concept in their mind and visually.
Practicality and value of mathematics can be verified when different problems that we face in life are resolved through mathematical knowledge. This study intends to identify whether the fraction teaching is being taught and learned at current elementary schools for students to recognize practicality and value of mathematical knowledge and to have the ability to apply the concept when solving problems in the real world. Accordingly, contextual problems and noncontextual problems are proposed around fractional arithmetic area, and compared and analyze the achievement level and problem solving processes of them. Analysis showed that there was significant difference in achievement level and solving process between contextual problems and noncontextual problems. To instruct more meaningful learning for student, contextual problems including historical context or practical situation should be presented for students to experience mathematics of creating mathematical knowledge on their own.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.2
/
pp.377-399
/
2010
Mixed calculations involving fractions and decimals covered in the unit 6-Na in elementary school math class cause students difficulties, leading them make lots of errors. If students fail to understand temporarily or partly what the teacher taught or lose confidence and continue to have difficulty due to a lack of understanding and skills of algorithm, though they properly understand the concept and principle of the learning content, it should be resolved through intensive teaching. For students suffering from this problem, a correct diagnosis and appropriate treatment are required. Therefore, this study developed a feedback program after diagnosing students' errors through evaluating them in order to continuously assist them to fully understand contents regarding mixed calculations involving fractions and decimals.
Mathematical notation is the main means to realize the power of mathematics. Under this perspective, this study analyzed the difficulties of learning an irrational number concept in terms of notation. I tried to find ways to overcome the difficulties arising from the notation. There are two primary ideas in the notation of irrational number using root. The first is that an irrational number should be represented by letter because it can not be expressed by decimal or fraction. The second is that $\sqrt{2}$ is a notation added the number in order to highlight the features that it can be 2 when it is squared. However it is difficult for learner to notice the reasons for using the root because the textbook does not provide the opportunity to discover. Furthermore, the reduction of the transparency for the letter in the development of history is more difficult to access from the conceptual aspects. Thus 'epistemological obstacles resulting from the double context' and 'epistemological obstacles originated by strengthening the transparency of the number' is expected. To overcome such epistemological obstacles, it is necessary to premise 'providing opportunities for development of notation' and 'an experience using the notation enhanced the transparency of the letter that the existing'. Based on these principles, this study proposed a plan consisting of six steps.
Journal of Elementary Mathematics Education in Korea
/
v.13
no.1
/
pp.1-15
/
2009
This research is to provide a useful reference for the future revision of textbook by comparative analysis with the textbook in the 4th grade of elementary school in Japan. The results from this research is same as follows: First, Korean curriculum is emphasizing the reasonable problem-solving ability developed on the base of the mathematical knowledge and skill. Meantime, Japanese puts much value on the is focusing on discretion and the capability in life so that they emphasize each person's learning and raising the power of self-learning and thinking. The ratio on mathematics in both company are high, but Japanese ensures much more hours than Korean. Second, the chapter of Korean textbook is composed of 8 units and the title of the chapter is shown as key word, then the next objects are describes as 'Shall we do$\sim$' type. Hence, the chapter composition of Japanese textbook is different among the chapter and the title of the chapter is described as 'Let's do$\sim$'. Moreover, Korean textbook is arranged focusing on present study, however Japanese is composed with each independent segments in the present study subject to the study contents. Third, Japanese makes students understand the decimal as the extension of the decimal system with measuring unit($\ell$, km, kg) then, learn the operation by algorithm. In Korea, students learn fraction earlier than decimal, but, in Japan students learn decimal earlier than fraction. For the diagram, in Korea, making angle with vertex and side comes after the concept of angle, vertex and side is explained. Hence, in Japan, they show side and vertex to present angle.
Journal of Elementary Mathematics Education in Korea
/
v.18
no.1
/
pp.1-17
/
2014
Instructions for the commutative property of multiplication at elementary schools tend to be based on checking the equality between the quantities of 'a times b 'and b' times a, ' for example, $3{\times}4=12$ and $4{\times}3=12$. This article critically examined the approaches to teach the commutative property of multiplication from Kant's perspective of mathematical knowledge. According to Kant, mathematical knowledge is a priori. Yet, the numeric exploration by checking the equality between the amounts of 'a groups of b' and 'b groups of a' does not reflect the nature of apriority of mathematical knowledge. I suggest we teach the commutative property of multiplication in a way that it helps reveal the operational schema that is necessarily and generally involved in the transformation from the structure of 'a times b' to the structure of 'b times a.' Distributive reasoning is the mental operation that enables children to perform the structural transformation for the commutative property of multiplication by distributing a unit of one quantity across the other quantity. For example, 3 times 4 is transformed into 4 times 3 by distributing each unit of the quantity 3, which results in $3{\times}4=(1+1+1){\times}4=(1{\times}4)+(1{\times}4)+(1{\times}4)+(1{\times}4)=4+4+4=4{\times}3$. It is argued that the distributive reasoning is also critical in learning the subsequent mathematics concepts, such as (a whole number)${\times}10$ or 100 and fraction concept and fraction multiplication.
Understanding decimal numbers is important in mathematics as well as real-life contexts. However, lots of students focus on procedures or algorithms of decimal numbers without understanding its meanings. This study analyzed teaching method related to decimal numbers in a series of mathematics textbooks of Korea, Japan, Singapore and the US. The results showed that three countries except Japan introduced the decimal numbers as another name of fraction, which highlights the relation between the concept of decimal numbers and fractions. And limited meanings of decimal numbers were shown such as 'equal parts of a whole' and 'measurement'. Especially in the korean textbooks, relationships between the decimals were dealt instrumentally and small number of models such as number lines or $10{\times}10$ grids were used repeatedly. Based these results, this study provides implications on what and how to deal with decimal numbers in teaching and learning decimal numbers with textbooks.
Journal of Elementary Mathematics Education in Korea
/
v.20
no.1
/
pp.105-129
/
2016
The elements of mathematical processes include mathematical reasoning, mathematical problem-solving, and mathematical communications. Proportion reasoning is a kind of mathematical reasoning which is closely related to the ratio and percent concepts. Proportion reasoning is the essence of primary mathematics, and a basic mathematical concept required for the following more-complicated concepts. Therefore, the study aims to analyze the proportion reasoning ability of sixth graders of primary school who have already learned the ratio and percent concepts. To allow teachers to quickly recognize and help students who have difficulty solving a proportion reasoning problem, this study analyzed the characteristics and patterns of proportion reasoning of sixth graders of primary school. The purpose of this study is to provide implications for learning and teaching of future proportion reasoning of higher levels. In order to solve these study tasks, proportion reasoning problems were developed, and a total of 22 sixth graders of primary school were asked to solve these questions for a total of twice, once before and after they learned the ratio and percent concepts included in the 2009 revised mathematical curricula. Students' strategies and levels of proportional reasoning were analyzed by setting up the four different sections and classifying and analyzing the patterns of correct and wrong answers to the questions of each section. The results are followings; First, the 6th graders of primary school were able to utilize various proportion reasoning strategies depending on the conditions and patterns of mathematical assignments given to them. Second, most of the sixth graders of primary school remained at three levels of multiplicative reasoning. The most frequently adopted strategies by these sixth graders were the fraction strategy, the between-comparison strategy, and the within-comparison strategy. Third, the sixth graders of primary school often showed difficulty doing relative comparison. Fourth, the sixth graders of primary school placed the greatest concentration on the numbers given in the mathematical questions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.