• 제목/요약/키워드: four-bar link mechanism

검색결과 31건 처리시간 0.027초

4절 링크구조를 응용한 플랙셔 힌지 기반 모듈형 나노포지셔너 (Modularized Flexure-Hinge Nanopositioner Based on Four-Bar-Link-Mechanism)

  • 채기운;배진현;정영훈
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.851-858
    • /
    • 2011
  • Nanopositioning technologies play an important role in the progress of electronics, optics, bio-engineering and various nano-scale technologies. As a result, various practical nanopositioning methods have been successfully introduced. Flexure mechanism is a valuable method in nanopositioning because of smooth and friction-free motion and the infinitesimal movement near to sub-nm. In this study a modularized nanopositioner based on parallelogram four-bar linkage structure with right-circular flexure hinge was developed. The positioning performance of a single axis nanopositioner and a XY nanopositioner which was extended from single axis one were demonstrated using control experiments. Consequently, it was shown that the developed single axis nanopositioner possessed high performance and could be extended to various multi-axis nanopositioners.

볼나사를 이용한 매니퓰레이터의 모델링 및 슬라이딩모드 제어 (Modeling and Sliding-mode Control of a Robot Manipulator actuated by the Ball Screw)

  • 최형식;박용헌;정경식;이호식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.292-295
    • /
    • 2001
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, a new type of robot actuated by the ball screw was proposed. The ball screw is actuated by using four bar mechanism. The dynamics model of the robot was set up. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, the sliding-mode control was applied.

  • PDF

유전자 알고리즘을 이용한 새로운 무릎 보장구의 최적 설계 (Optimal Design of a Novel Knee Orthosis using a Genetic Algorism)

  • 표상훈;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.1021-1028
    • /
    • 2011
  • The objective of this paper is to optimize the design parameters of a novel mechanism for a robotic knee orthosis. The feature of the proposed knee othosis is to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The quadriceps device operates in five-bar links with 2-DOF motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking. However, the proposed orthosis must use additional linkages than a simple four-bar mechanism. To maximize the benefit of reducing the actuators power by using the developed kinematic design, it is necessary to minimize total weight of the device, while keeping necessary actuator performances of torques and angular velocities for support. In this paper, we use a SGA (Simple Genetic Algorithm) to minimize sum of total link lengths and motor power by reducing the weight of the novel knee orthosis. To find feasible parameters, kinematic constraints of the hamstring and quadriceps mechanisms have been applied to the algorithm. The proposed optimization scheme could reduce sum of total link lengths to half of the initial value. The proposed optimization scheme can be applied to reduce total weight of general multi-linkages while keeping necessary actuator specifications.

가스 스프링을 이용한 높이조절 벙커침대 설계 (Design of a Height Adjustable Bunker Bed Using a Gas Spring)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.19-27
    • /
    • 2021
  • A bunker bed is a type of furniture that efficiently utilizes a narrow indoor space by having a high bed and using the empty space below as a living and storage space. The demand for multi-purpose furniture is increasing due to the recent increase in single-person households and wide-spread shared accommodation. According to the consumer research, one of the major drawbacks of a bunker bed was to get on and off the bed through a ladder or stairs. In order to overcome these problems, it was confirmed that the height adjustment function that can easily adjust the minimum and maximum heights of the bed was necessary. In this study, a height adjustable bunker bed was designed by using a gas spring that generates a repulsive force by the compressed gas inside. The design process consisted of the following three steps: Firstly, the hysteresis characteristics due to a friction and spring constant of a commercial gas spring were confirmed by measuring the repulsive force vs. compressed displacement. Secondly, requirements of the vertical lifting force exerted on the bed against gravity force were derived. Finally, the height-adjustable bed using the four-bar link mechanism was designed with 4 parameters so that the bed weight of 60-70 kgf could be adjusted to 800 mm in height by an affordable initial operation force. The performance was verified through prototype production and the results of vertical displacement and force to move were nearly the same as designed. In addition, an electrically operated height-adjustable bed was also designed with linear actuators and the performance was proved with the prototype.

볼나사 구동기를 이용한 다관절 로봇의 모델링 및 제어 (Modeling & Control of a Multi-Joint Robot actuated by the Ball Screw)

  • 최형식;김영식;전대원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.323-326
    • /
    • 1997
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, the developer a new type of robot actuated by the ball screw. The robot is an articulated shape, which is composed of four axes. The base axis is actuated similarly with conventional robot, but the others are actuated by four bars mechanism composed of the ball screw. We setup the dynamics model of the robot. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, we applied sliding-mode control.

  • PDF

국립재활원 외골격 로봇(NREX)의 손 모듈 개발 (Development of Robotic Hand Module of NRC Exoskeleton Robot (NREX))

  • 송준용;송원경
    • 로봇학회논문지
    • /
    • 제10권3호
    • /
    • pp.162-170
    • /
    • 2015
  • This paper describes the development of a hand module of NREX (National Rehabilitation Center Robotic Exoskeleton) designed to assist individuals with sustained neurological impairments such as stroke and spinal cord injuries. To construct a simple and lightweight hand module, the robotic hand adopts a mechanism driven by a motor and moved by two four-bar linkages. The motor facilitates the flexion-extension movements of the thumb and the other four fingers simultaneously. Thus, an individual using the robotic hand module can effectively grip and release objects related to daily life activities. The robotic hand module has been designed to cover the range of motion with respect to its link distance. This hand module can be used in therapeutic rehabilitation as well as for daily life assistance. In addition, this hand module can either be mounted on an NREX or used as a standalone module.

Development of an autonomous biped walking robot

  • hyeung-sik choi;Oh, jeong-min;Kim, young-sik;Baek, chang-yul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.105.6-105
    • /
    • 2002
  • Contents 1We developed a new type of lower part of the human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch Joints and one roll joint. In all, a 8 degree-of-freedom robot was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has an embeded controller system including host computer, batteries and motor drivers. In the performance test, we had basic stable walking data so far, but we f...

  • PDF

DESIGN AND PERFORMANCE PARAMETERS OF VIBRATING POTATO DIGGERS

  • Kang, Whoa-S.;Kim, Sang-H.;Lee, Gwi-H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.734-743
    • /
    • 1993
  • The performances of three same type of vibrating potato diggers were estimated by observing the potato separation and material flow on the bottom plate. Four-bar mechanism were adopted for three diggers and pairs of eccentric cams on both sides of driving shaft were used as driving link of the diggers. Each machine was tested with different amplitudes , frequencies, and travels speeds. Blade performance were observed in three categories : Impossible forward travel , acceptable operation, and unsatisfactory potato digging , but good material flow. Three parameters were used to set marginal values that enable the machines operate for potato digging, and the parameters were compared to select best one. Three parameters are λ, $\rho$, and K.λ is the ratio of vibrating speed to travel speed, $\rho$ is the ratio of blade acceleration to travel speed, and K is the ratio of blade acceleration to gravitational acceleration. K value of 2 or more is suggested to be used as design and evalu tion criterion of the vibrating digger.

  • PDF

슬라이드 링크 구조를 이용한 원터치 완강기 (One-touch Descending Lifeline with Sliding Linkage Structure)

  • 김원찬;나다율;문혜인;김상현
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.42-47
    • /
    • 2021
  • A one-touch descending lifeline that can easily be installed and rapidly evacuated in the event of a fire accident in high-rise buildings was proposed to overcome difficulties of conventional descending lifeline such as complex installation methods and procedures. However, this lifeline exhibits limitations such as restrictions in installation location and large apparatus size. Therefore, this paper proposes a sliding-type descending lifeline, which has a similar operation to that of current one-touch descending lifeline and solves the aforementioned limitations. A double square link mechanism including a sliding four-bar linkage is proposed and the descending lifeline support is redesigned to unfold in two different planes, allowing 3D movement. Additionally, the shape of the support frame is designed to obtain two attachment surfaces that can be attached to a wall, irrespective of the angle between the window and the inner wall. FEA analysis using ABAQUS is performed to ensure that the robustness of the presented support complies with the Fire Control Act Enforcement Decree. Finally, the feasibility of the proposed sliding one-touch descending lifeline is verified through fabrication.

접이식 전동휠체어의 동적 전도해석 연구 (Study on Dynamic Tip-over Analysis of Foldable Electric Wheelchair)

  • 장대진;김용철;김신기;문무성;박종철
    • 재활복지공학회논문지
    • /
    • 제10권2호
    • /
    • pp.133-139
    • /
    • 2016
  • 전동휠체어는 장애인들이 편리하게 이동할 수 있는 이동수단이다. 하지만 전동휠체어를 사용하다가 전복되는 사고가 매년 증가하고 있다. 현재 전동휠체어 관련한 KS P 7176 규격에는 동적안전성 시험항목이 있지만 이는 전동휠체어의 안전성을 확보하지 못하였다. 본 연구에서는 새롭게 개발한 장애인 차량에 적재 가능한 접이식 전동휠체어를 소개하고 본 휠체어를 기본으로 주행 중 동적 전도해석 기법에 관한 내용을 소개하고자 한다. 전도해석은 force-moment 안정성 측정법을 사용하였으며 회전반경, 가속도, 무게중심점에 대한 영향을 평가하였다. 본 해석 방법으로 전동휠체어의 안정성을 확보할 수 있으며 동적 안정성 평가 항목 개발에 기초자료로 제공할 수 있다.