• Title/Summary/Keyword: forward modeling

Search Result 327, Processing Time 0.025 seconds

Three-dimensional Finite Difference Modeling of Time-domain Electromagnetic Method Using Staggered Grid (엇갈린 격자를 이용한 3차원 유한차분 시간영역 전자탐사 모델링)

  • Jang, Hangilro;Nam, Myung Jin;Cho, Sung Oh;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.121-128
    • /
    • 2017
  • Interpretation of time-domain electromagnetic (TEM) data has been made mostly based on one-dimensional (1-D) inversion scheme in Korea. A proper interpretation of TEM data should employ 3-D TEM forward and inverse modeling algorithms. This study developed a 3-D TEM modeling algorithm using a finite difference time-domain (FDTD) method with staggered grid. In numerically solving Maxwell equations, fictitious displacement current is included based on an explicit FDTD method using a central difference approximation scheme. The developed modeling algorithm simulated a small-coil source configuration to be verified against analytic solutions for homogeneous half-space models. Further, TEM responses for a 3-D anomaly are modeled and analyzed. We expect that it will contribute greatly to the precise interpretation of TEM data.

Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART I, Theoretical Modeling (외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART I, 이론적 모델링)

  • Seok, Jong-Won;Lee, Ju-Hong;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • Due to the recent quantum leaps forward in bio-, nano-, and information-technologies (BT, NT and IT), the precisionization and miniaturization of mechanical and electrical components are in high demand. In particular, the ITrelated equipments that take a great part in our domestic industry are in the area requiring high precision technologies. As a consequence, the researches on the development vibration isolation systems that diminish external disturbance or internal vibration are highly required. Among the components comprising the vibration isolation system, air spring has become on a focal point for the researchers due to its merits. This air spring is able to support heavy loads, keep a low natural frequency despite of having a lower value of stiffness, and control the performance of vibration isolation. However, sometimes the sole use of air spring is in demand due to some economic reasons. Under this circumstance, the damping effect of sole air spring may not enough to reduce sufficient amount of vibration. In this study, the air spring mount system connecting with an external chamber is proposed to increase or control the damping effect. To investigate its damping mechanism, the thermal and dynamic behaviors of the system is examined through a theoretical modeling approach in this part of research. In this approach, thermomechanical and Helmholtz resonator type models are to be employed for the air spring/external chambers and connecting tube system, respectively. The frequency response functions (FRFs) derived from the modeling effort are evaluated with physical parametric values and the effects of connecting tube length on these FRFs are identified through computer simulations.

Finite element modeling technique for predicting mechanical behaviors on mandible bone during mastication

  • Kim, Hee-Sun;Park, Jae-Yong;Kim, Na-Eun;Shin, Yeong-Soo;Park, Ji-Man;Chun, Youn-Sic
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.4
    • /
    • pp.218-226
    • /
    • 2012
  • PURPOSE. The purpose of this study was to propose finite element (FE) modeling methods for predicting stress distributions on teeth and mandible under chewing action. MATERIALS AND METHODS. For FE model generation, CT images of skull were translated into 3D FE models, and static analysis was performed considering linear material behaviors and nonlinear geometrical effect. To find out proper boundary and loading conditions, parametric studies were performed with various areas and directions of restraints and loading. The loading directions are prescribed to be same as direction of masseter muscle, which was referred from anatomy chart and CT image. From the analysis, strain and stress distributions of teeth and mandible were obtained and compared with experimental data for model validation. RESULTS. As a result of FE analysis, the optimized boundary condition was chosen such that 8 teeth were fixed in all directions and condyloid process was fixed in all directions except for forward and backward directions. Also, fixing a part of mandible in a lateral direction, where medial pterygoid muscle was attached, gave the more proper analytical results. Loading was prescribed in a same direction as masseter muscle. The tendency of strain distributions between the teeth predicted from the proposed model were compared with experimental results and showed good agreements. CONCLUSION. This study proposes cost efficient FE modeling method for predicting stress distributions on teeth and mandible under chewing action. The proposed modeling method is validated with experimental data and can further be used to evaluate structural safety of dental prosthesis.

A Study on the Ray Based Broad Band Modeling for Shallow Water Acoustic Wave Propagations (천해 음파전달 모의에 적합한 음선기반 광대역 신호 모델링 기법에 관한 연구)

  • Park Cheol-Soo;Cho Yong-Jin;Ahn Jong-Woo;Seong Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.298-304
    • /
    • 2006
  • This paper proposes a ray-based forward modeling scheme which is suitable for the shallow water acoustic wave propagation simulations. The proposed model comprises of ray tracings for the layered media of which sound speed profiles are interpolated linearly. considerations of plane and spherical wave reflection coefficients. and calculations of the phases and the amplitudes of eigen rays. The main characteristic of the scheme is fast simulation time due to direct calculation of the broad-band time signals in the time-domain, i.e. without transformation of the frequency-domain solutions to the time si 밍 131s. Finally, we applied the model to 4-types of test environments and compared the resulting signals with those of ORCA and Ram in order to validate the proposed model.

Study on Local Path Control Method based on Beam Modeling of Obstacle Avoidance Sonar (장애물회피소나 빔 모델링 기반의 국부경로제어 기법 연구)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.218-224
    • /
    • 2012
  • Recently, as the needs of developing the micro autonomous underwater vehicle (AUV) are increasing, the acquisition of the elementary technology is urgent. While they mostly utilizes information of the forward looking sonar (FLS) in conventional studies of the local path control as an elementary technology, it is desirable to use the obstacle avoidance sonar (OAS) because the size of the FLS is not suitable for the micro AUV. In brief, the local path control system based on the OAS for the micro AUV operates with the following problems: the OAS offers low bearing resolution and local range information, it requires the system that has reduced power consumption to extend the mission execution time, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent local path control algorithm based on the beam modeling of OAS with the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance and analyze the characteristic of the proposed algorithm, the course control of the underwater flight vehicle (UFV) is performed in the horizontal plane. Simulation results show that the feasibility of real application and the necessity of additional work in the proposed algorithm.

Wafer state prediction in 64M DRAM s-Poly etching process using real-time data (실시간 데이터를 위한 64M DRAM s-Poly 식각공정에서의 웨이퍼 상태 예측)

  • 이석주;차상엽;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.664-667
    • /
    • 1997
  • For higher component density per chip, it is necessary to identify and control the semiconductor manufacturing process more stringently. Recently, neural networks have been identified as one of the most promising techniques for modeling and control of complicated processes such as plasma etching process. Since wafer states after each run using identical recipe may differ from each other, conventional neural network models utilizing input factors only cannot represent the actual state of process and equipment. In this paper, in addition to the input factors of the recipe, real-time tool data are utilized for modeling of 64M DRAM s-poly plasma etching process to reflect the actual state of process and equipment. For real-time tool data, we collect optical emission spectroscopy (OES) data. Through principal component analysis (PCA), we extract principal components from entire OES data. And then these principal components are included to input parameters of neural network model. Finally neural network model is trained using feed forward error back propagation (FFEBP) algorithm. As a results, simulation results exhibit good wafer state prediction capability after plasma etching process.

  • PDF

Comparison of Three Modeling Methods for Identifying Unknown Magnetization of Ferromagnetic Thin Plate

  • Choi, Nak-Sun;Kim, Dong-Wook;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Hong-Joon;Kim, Dong-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.799-805
    • /
    • 2011
  • This study presents three different magnetization models for identifying unknown magnetization of the ferromagnetic thin plate of a ship. First, the forward problem should be solved to accurately predict outboard magnetic fields due to the magnetization distribution estimated at a certain time. To achieve this, three different modeling methods for representing remanent magnetization (i.e., magnetic charge method, magnetic dipole array method, and magnetic moment method) were utilized. Material sensitivity formulas containing the first-order gradient information of an objective function were then adopted for an efficient search of an optimum magnetization distribution on the hull. The validity of the proposed methods was tested with a scale model ship, and field signals predicted from the three different models were thoroughly investigated with reference to the experimental data.

Estimation of Optimal Weight in Tidal Modeling with the Adjoint Method (조석 모델링에서 adjoint 방법 적용시 적정 가중치 산정)

  • Lee, Jae-Hak;Park, Kyeong;Song, Yong-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.177-185
    • /
    • 2000
  • The adjoint method is a method of data assimilation to improve the model results by seeking for model parameters that minimize the cost function and satisfy the governing equations of a model simultaneously. An adjoint package was set up for the two-dimensional linear tidal model and was applied to an idealized domain for an optimal estimation of the open boundary conditions. The assimilating data were selected from the results of forward modeling. Attention is paid on the response of the adjoint package to weighting parameters, the importance of initial estimates of model parameters and the applicability of the adjoint package to the case with varying depth. A procedure to determine optimal weight is presented based on the relationships between weights and other factors.

  • PDF

A Study on Kinematics Modeling and Motion Control Algorithm Development in Joint for Vertical Type Articulated Robot Arma (수직다관절형 아암의 운동학적 모델링 및 관절공간 모션제어에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Yang, Jun-Seok;Won, Jong-Beom;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2016
  • In this paper, we propose a new technique to the design and real-time control of an adaptive controller for robotic manipulator based on digital signal processors. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot manipulator with eight joints. joint space and cartesian space.

Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core

  • Sudhakar, V;Gopalkrishnan, S;Vijayaraju, K
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.657-678
    • /
    • 2018
  • Sandwich structures are well known for their use in aircraft, naval and automobile industries due to their high strength resistance with light weight and high energy absorption capability. Sandwich beams with soft core are very common and simple structures that are employed in day to day general use appliances. Modeling and analysis of sandwich structures is not straight forward due to the interactions between core and face sheets. In this paper, formulation of Super Convergent finite elements for analysis of the sandwich beams with soft core based on Euler Bernoulli beam theory are presented. Two elements, Eul4d with 4 degrees of freedom assuming rigid core in transverse direction and Eul10d with 10 degrees of freedom assuming the flexible core were developed are presented. The formulation considers the top, bottom face sheets and core as separate entities and are coupled by beam kinematics. The performance of these elements are validated by results available in the published literature. Number of studies are performed using the formulated elements in static, free vibration and wave propagation analysis involving various boundary and loading conditions. The paper highlights the advantages of the elements developed over the traditional elements for modeling of sandwich beams and, in particular wave propagation analysis.