Browse > Article
http://dx.doi.org/10.7582/GGE.2017.20.3.121

Three-dimensional Finite Difference Modeling of Time-domain Electromagnetic Method Using Staggered Grid  

Jang, Hangilro (Department of Energy and Mineral Resources Engineering, Sejong University)
Nam, Myung Jin (Department of Energy and Mineral Resources Engineering, Sejong University)
Cho, Sung Oh (Department of Energy and Mineral Resources Engineering, Sejong University)
Kim, Hee Joon (Department of Energy Resources Engineering, Pukyong National University)
Publication Information
Geophysics and Geophysical Exploration / v.20, no.3, 2017 , pp. 121-128 More about this Journal
Abstract
Interpretation of time-domain electromagnetic (TEM) data has been made mostly based on one-dimensional (1-D) inversion scheme in Korea. A proper interpretation of TEM data should employ 3-D TEM forward and inverse modeling algorithms. This study developed a 3-D TEM modeling algorithm using a finite difference time-domain (FDTD) method with staggered grid. In numerically solving Maxwell equations, fictitious displacement current is included based on an explicit FDTD method using a central difference approximation scheme. The developed modeling algorithm simulated a small-coil source configuration to be verified against analytic solutions for homogeneous half-space models. Further, TEM responses for a 3-D anomaly are modeled and analyzed. We expect that it will contribute greatly to the precise interpretation of TEM data.
Keywords
Time-domain electromagnetic survey; Staggered grid; Finite-difference method; Small coil; Fictitious displacement current;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Adhidjaja, J. I., and Hohmann, G. H., 1989, A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body, Geophys. J. Int., 98, 233-242.   DOI
2 Albouy, Y., Andrieux, P., Rakotondrasoa, G., Ritz, M., Descloitres, M., Join, J., and Rasolomanana, E., 2001, Mapping coastal aquifers by joint inversion of DC and TEM soundings-Three case histories, Groundwater, 39, 87-97.   DOI
3 Birtwistle, G. M., 1968, The explicit solution of the equation of heat conduction, Comput. J., 11, 317-323.   DOI
4 Chew, W. C., 1990, Waves and fields in inhomogeneous media, Wiley-IEEE Press.
5 Cho, D. H., 2006, Electromagnetic survey in Korea, Econ. Environ. Geol., 39, 427-440 (in Korean with English abstract).
6 Cho, I. K., 2014, Development of three-dimensional integrated analysis module for time-domain electromagnetic survey, Research Report, Korea Resources Corporation (in Korean).
7 Cho, I. K., Kim, R. Y., and Yi, M. Y., 2015, One-dimensional modeling of airborne transient electromagnetic using a long Grounded-wire Source, Geophys. and Geophys. Explor., 18, 216-222 (in Korean with English abstract).   DOI
8 Cho, I. K., Jang, J. H., Yi, M. Y., and Rim, H. R., 2016, Laterally Constrained Inversion of GREATEM data, Geophys. and Geophys. Explor., 20, 33-42 (in Korean with English abstract).
9 Cho, I. K., Lee, K. S., Kim, Y. J., and Kim, R. Y., 2016, Resistivity survey using long electrodes, Geophys. and Geophys. Explor., 19, 45-50 (in Korean with English abstract).   DOI
10 Commer, M., and Newman, G., 2004, A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources, Geophysics, 69, 1192-1202.   DOI
11 Du Fort, E. C., and Frankel, S. P., 1953, Stability conditions in the numerical treatment of parabolic differential equations, Math. Comput., 7, 135-152.   DOI
12 Jang, H., and Kim, H. J., 2015, Mapping deep-sea hydrothermal deposits with in-loop transient electromagnetic surveys: Insights from 1D forward and inverse modeling, J. Appl. Geophy., 123, 170-176.   DOI
13 Endo, M., and Noguchi, K., 2002, Three-dimensional modeling considering the topography for the case of the time-domain electromagnetic method, in Zhdanov, M.S., and Wannamaker, P.E., ed., Three-Dimensional Electromagnetics: Proceedings of the Second International Symposium, Elsevier, 85-107.
14 Everett, M. E., 2009, Transient electromagnetic response of a loop source over a rough geological medium, Geophys. J. Int., 177, 421-429.   DOI
15 Haber, E., 2015, Computational methods in geophysical electromagnetics, Society for Industrial Applied Mathematics.
16 Hwang, H. S., Moon, C. K., Lee, S. K., and Lee, T. S., 2001, Determination of an underground seawater flow using a TEM decay curve, Econ. Environ. Geol., 34, 499-506 (in Korean with English abstract).
17 Jang, H., Jang, H., Lee, K. H., and Kim, H. J., 2013, Step-off, vertical electromagnetic responses of a deep resistivity layer buried in marine sediments, J. Geophys. Eng., 10, 025011.   DOI
18 Jang, H., Kim, H. J., and Nam, M. J., 2016, In-loop transient electromagnetic responses with induced polarization effects of deep-sea hydrothermal deposits, IEEE Trans. Geosci. Remote Sens., 54, 7272-7278.   DOI
19 Lee, S. K., and Kim, K. E., 1993, Test for detection of steel cage defects in concrete pile substructure with transient electromagnetic logging, Butsuri-Tansa, 46, 183-189 (in Japanese with English abstract).
20 Li, S., Sun, H., Lu, X., and Li, X., 2014, Three-dimensional modeling of transient electromagnetic responses of waterbearing structures in front of a tunnel face, J. Environ. Eng. Geoph., 19, 13-32.   DOI
21 Seo, S. Y., and Hyun, B. G., 1982, Finite difference modeling of low-frequency transient electromagnetic field, J. Korean Inst. Mineral Mining Eng., 19, 227-232 (in Korean).
22 Lim, H. R., and Hyun, B. G., 1988, Simple inversion of TEM data using equivalent current, J. Korean Inst. Mineral Mining Eng., 25, 281-293 (in Korean).
23 Lim, M. T., and Hyun, B. G., 1984, An experimental study on TEM method for a thin plate ore body, J. Korean Inst. Mineral Mining J. Korean Inst. Mineral Mining Eng., 21, 185-196 (in Korean).
24 Nam, M. J., and Kim, H. J., 2010, 3D MT inversion using an edge finite element modeling algorithm, Geosy. Eng., 13, 43-52.   DOI
25 Oristaglio, M. L., and Hohmann, G. W., 1984, Diffusion of electromagnetic fields into a two-dimensional earth: A finitedifference approach, Geophysics, 49, 870-894.   DOI
26 Sasaki, Y., 1999, Three-dimensional frequency-domain electromagneticmodeling using the finite-difference method, Butsuri-Tansa, 52, 421-431 (in Japanese with English abstract).
27 Taflove, A., and Hagness, S. C., 2005, Computational electrodynamics: the finite-difference time-domain method, Artech House.
28 Ward, S. H., and Hohmann, G. W., 1988, Electromagnetic theory for geophysical applications, in Nabighian, M. N., ed., Electromagnetic Methods in Applied Geophysics, Vol. I, Soc. Expl. Geophys., 131-311.
29 Wang, T., and Hohmann, G. W., 1993, A finite-difference, timedomain solution for three-dimensional electromagnetic modeling, Geophysics, 58, 797-809.   DOI
30 Yee, K. S., 1966, Numerical solution of initial boundary problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., AP-14, 302-309.