DOI QR코드

DOI QR Code

Three-dimensional Finite Difference Modeling of Time-domain Electromagnetic Method Using Staggered Grid

엇갈린 격자를 이용한 3차원 유한차분 시간영역 전자탐사 모델링

  • Jang, Hangilro (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Nam, Myung Jin (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Cho, Sung Oh (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Kim, Hee Joon (Department of Energy Resources Engineering, Pukyong National University)
  • 장한길로 (세종대학교 에너지자원공학과) ;
  • 남명진 (세종대학교 에너지자원공학과) ;
  • 조성오 (세종대학교 에너지자원공학과) ;
  • 김희준 (부경대학교 에너지자원공학과)
  • Received : 2017.03.23
  • Accepted : 2017.06.13
  • Published : 2017.08.31

Abstract

Interpretation of time-domain electromagnetic (TEM) data has been made mostly based on one-dimensional (1-D) inversion scheme in Korea. A proper interpretation of TEM data should employ 3-D TEM forward and inverse modeling algorithms. This study developed a 3-D TEM modeling algorithm using a finite difference time-domain (FDTD) method with staggered grid. In numerically solving Maxwell equations, fictitious displacement current is included based on an explicit FDTD method using a central difference approximation scheme. The developed modeling algorithm simulated a small-coil source configuration to be verified against analytic solutions for homogeneous half-space models. Further, TEM responses for a 3-D anomaly are modeled and analyzed. We expect that it will contribute greatly to the precise interpretation of TEM data.

국내에서 시간영역 전자탐사(time-domain/transient electromagnetic, TEM) 자료의 해석은 1차원 알고리듬에 주로 의존하고 있는 실정이기 때문에 정밀한 해석을 위하여 3차원 모델링 및 역산 해석 프로그램의 개발이 필요한 상황이다. 이 연구에서는 엇갈린 격자를 이용한 시간영역 유한차분(staggered-grid finite-difference time-domain, FDTD)법에 기초하여 3차원 TEM 반응 모델링 알고리듬을 개발하였다. 시간영역 전자탐사의 모델링을 위해 맥스웰 방정식을 현시적 중앙점 FDTD법을 이용하여 이산화하였으며 수치 안정성을 높이기 위해 가상 변위전류항을 도입하였다. 일반적으로 많이 활용되는 소형 코일 송신원을 수치적으로 구현하여 균질 반무한 공간에서의 해석해와 비교 검증하고 3차원 이상체에 대한 반응을 분석하였다. 이 연구에서 개발된 모델링 프로그램은 향후 TEM 전자탐사 자료의 정밀 해석에 기초가 될 것으로 기대한다.

Keywords

References

  1. Adhidjaja, J. I., and Hohmann, G. H., 1989, A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body, Geophys. J. Int., 98, 233-242. https://doi.org/10.1111/j.1365-246X.1989.tb03348.x
  2. Albouy, Y., Andrieux, P., Rakotondrasoa, G., Ritz, M., Descloitres, M., Join, J., and Rasolomanana, E., 2001, Mapping coastal aquifers by joint inversion of DC and TEM soundings-Three case histories, Groundwater, 39, 87-97. https://doi.org/10.1111/j.1745-6584.2001.tb00354.x
  3. Birtwistle, G. M., 1968, The explicit solution of the equation of heat conduction, Comput. J., 11, 317-323. https://doi.org/10.1093/comjnl/11.3.317
  4. Chew, W. C., 1990, Waves and fields in inhomogeneous media, Wiley-IEEE Press.
  5. Cho, D. H., 2006, Electromagnetic survey in Korea, Econ. Environ. Geol., 39, 427-440 (in Korean with English abstract).
  6. Cho, I. K., 2014, Development of three-dimensional integrated analysis module for time-domain electromagnetic survey, Research Report, Korea Resources Corporation (in Korean).
  7. Cho, I. K., Kim, R. Y., and Yi, M. Y., 2015, One-dimensional modeling of airborne transient electromagnetic using a long Grounded-wire Source, Geophys. and Geophys. Explor., 18, 216-222 (in Korean with English abstract). https://doi.org/10.7582/GGE.2015.18.4.216
  8. Cho, I. K., Jang, J. H., Yi, M. Y., and Rim, H. R., 2016, Laterally Constrained Inversion of GREATEM data, Geophys. and Geophys. Explor., 20, 33-42 (in Korean with English abstract).
  9. Cho, I. K., Lee, K. S., Kim, Y. J., and Kim, R. Y., 2016, Resistivity survey using long electrodes, Geophys. and Geophys. Explor., 19, 45-50 (in Korean with English abstract). https://doi.org/10.7582/GGE.2016.19.1.045
  10. Commer, M., and Newman, G., 2004, A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources, Geophysics, 69, 1192-1202. https://doi.org/10.1190/1.1801936
  11. Du Fort, E. C., and Frankel, S. P., 1953, Stability conditions in the numerical treatment of parabolic differential equations, Math. Comput., 7, 135-152. https://doi.org/10.1090/S0025-5718-1953-0059077-7
  12. Endo, M., and Noguchi, K., 2002, Three-dimensional modeling considering the topography for the case of the time-domain electromagnetic method, in Zhdanov, M.S., and Wannamaker, P.E., ed., Three-Dimensional Electromagnetics: Proceedings of the Second International Symposium, Elsevier, 85-107.
  13. Everett, M. E., 2009, Transient electromagnetic response of a loop source over a rough geological medium, Geophys. J. Int., 177, 421-429. https://doi.org/10.1111/j.1365-246X.2008.04011.x
  14. Haber, E., 2015, Computational methods in geophysical electromagnetics, Society for Industrial Applied Mathematics.
  15. Hwang, H. S., Moon, C. K., Lee, S. K., and Lee, T. S., 2001, Determination of an underground seawater flow using a TEM decay curve, Econ. Environ. Geol., 34, 499-506 (in Korean with English abstract).
  16. Jang, H., Jang, H., Lee, K. H., and Kim, H. J., 2013, Step-off, vertical electromagnetic responses of a deep resistivity layer buried in marine sediments, J. Geophys. Eng., 10, 025011. https://doi.org/10.1088/1742-2132/10/2/025011
  17. Jang, H., and Kim, H. J., 2015, Mapping deep-sea hydrothermal deposits with in-loop transient electromagnetic surveys: Insights from 1D forward and inverse modeling, J. Appl. Geophy., 123, 170-176. https://doi.org/10.1016/j.jappgeo.2015.10.003
  18. Jang, H., Kim, H. J., and Nam, M. J., 2016, In-loop transient electromagnetic responses with induced polarization effects of deep-sea hydrothermal deposits, IEEE Trans. Geosci. Remote Sens., 54, 7272-7278. https://doi.org/10.1109/TGRS.2016.2599003
  19. Lee, S. K., and Kim, K. E., 1993, Test for detection of steel cage defects in concrete pile substructure with transient electromagnetic logging, Butsuri-Tansa, 46, 183-189 (in Japanese with English abstract).
  20. Li, S., Sun, H., Lu, X., and Li, X., 2014, Three-dimensional modeling of transient electromagnetic responses of waterbearing structures in front of a tunnel face, J. Environ. Eng. Geoph., 19, 13-32. https://doi.org/10.2113/JEEG19.1.13
  21. Lim, H. R., and Hyun, B. G., 1988, Simple inversion of TEM data using equivalent current, J. Korean Inst. Mineral Mining Eng., 25, 281-293 (in Korean).
  22. Lim, M. T., and Hyun, B. G., 1984, An experimental study on TEM method for a thin plate ore body, J. Korean Inst. Mineral Mining J. Korean Inst. Mineral Mining Eng., 21, 185-196 (in Korean).
  23. Nam, M. J., and Kim, H. J., 2010, 3D MT inversion using an edge finite element modeling algorithm, Geosy. Eng., 13, 43-52. https://doi.org/10.1080/12269328.2010.10541308
  24. Oristaglio, M. L., and Hohmann, G. W., 1984, Diffusion of electromagnetic fields into a two-dimensional earth: A finitedifference approach, Geophysics, 49, 870-894. https://doi.org/10.1190/1.1441733
  25. Sasaki, Y., 1999, Three-dimensional frequency-domain electromagneticmodeling using the finite-difference method, Butsuri-Tansa, 52, 421-431 (in Japanese with English abstract).
  26. Seo, S. Y., and Hyun, B. G., 1982, Finite difference modeling of low-frequency transient electromagnetic field, J. Korean Inst. Mineral Mining Eng., 19, 227-232 (in Korean).
  27. Taflove, A., and Hagness, S. C., 2005, Computational electrodynamics: the finite-difference time-domain method, Artech House.
  28. Ward, S. H., and Hohmann, G. W., 1988, Electromagnetic theory for geophysical applications, in Nabighian, M. N., ed., Electromagnetic Methods in Applied Geophysics, Vol. I, Soc. Expl. Geophys., 131-311.
  29. Wang, T., and Hohmann, G. W., 1993, A finite-difference, timedomain solution for three-dimensional electromagnetic modeling, Geophysics, 58, 797-809. https://doi.org/10.1190/1.1443465
  30. Yee, K. S., 1966, Numerical solution of initial boundary problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., AP-14, 302-309.