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(Abstract)

In this paper, we propose a new technique to the design and real-time control of
an adaptive controller for robotic manipulator based on digital signal processors. The
Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive
control algorithms to provide enhanced motion control performance for dual-arm
robotic manipulators. In the proposed scheme, adaptation laws are derived from model
reference adaptive control principle based on the improved Lyapunov second method.
The proposed adaptive controller consists of an adaptive feed-forward and feedback
controller and time-varying auxiliary controller elements. The proposed control scheme
is simple in structure, fast in computation, and suitable for real-time control.
Moreover, this scheme does not require any accurate dynamic modeling, nor values of
manipulator parameters and payload. Performance of the proposed adaptive controller
is illustrated by simulation and experimental results for a dual arm robot manipulator
with eight joints. joint space and cartesian space.
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1. INTRODUCTION

Currently there are much advanced
techniques that are suitable for servo control
of a large class of nonlinear systems
including robotic manipulators (P.C.V. Parks,
1966; Y.K.Choi et al., 1986; Y.M.Yoshhiko,
1995). Since the pioneering work of
Dubowsky and DesForges (1979), the interest
in adaptive control of robot manipulators has
been growing steadily (T. C. Hasi, 1986; D.
Koditschck, 1983; A. Koivo et al., 1983; S.
Nicosia et al., 1984). This growth is largely
due to the fact that adaptive control theory
is  particularly — well-suited to  robotic
manipulators whose dynamic model is highly
complex and may contain = unknown
parameters. However, implementation of these
algorithms  generally  involves  intensive
numerical computations (J. J. Craig, 1988; H.
Berghuis et al., 1993).

Current industrial approaches to the design
of robot arm control systems treat each joint
of the

servomechanism. This approach models the

robot arm as a  simple

time varying dynamics of a manipulator
inadequately because it neglects the motion
and configuration of the whole arm
mechanism. The changes in the parameters of
the controlled system are significant enough
feedback

ineffective. This basic

to render conventional control

strategies control
system enables a manipulator to perform
in the

simple positioning tasks such as

pick-and-place  operation. However, joint
controllers are severely limited in precise
tracking of fast trajectories and sustaining
desirable dynamic performance for variations
of payload and parameter uncertainties (R.
Ortega et al., 1989; P. Tomei, 1991). In many
servo control applications the linear control
scheme proves unsatisfactory, therefore, a
need for nonlinear techniques is increasing.
Adaptive and optimal multi variable control
methods can  track

system  parameter

variations. Dual control, learning, neural
networks, genetic algorithms and Fuzzy Logic
control methodologies are all among the
digital controllers implementable by a DSP
(N. Sadegh et al., 1990; Z. Ma et al., 1995).
In addition, DSP's are as fast in computation
as most 32-bit microprocessors and yet at a
fraction of their prices. These features make
them a viable computational tool for digital
implementation of advanced controllers. High
performance DSPs with increased levels of
integration for functional modules have
become the dominant solution for digital
control  systems. Digital signal processors
(DSP's) are special purpose mMmiCroprocessors
that are particularly suitable for intensive
numerical computations involving sums and
products of variables. Digital versions of most
advanced control algorithms can be defined
as sums and products of measured variables,
thus can naturally be implemented by DSP's.
DSPs allow straightforward implementation of
advanced control algorithms that result in

improved system control.
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This paper describes a new approach to
the design of adaptive control system and
real-time implementation of dual arm robot
using digital signal processors for robotic
manipulators to achieve the improvement of
speed ness, repeating precision, and tracking
performance at the joint and cartesian space.
This paper is organized as follows : In
Section 1, the dynamic model of the robotic
manipulator is derived. Section 1II derives
adaptive control laws based on the model
reference adaptive control theory using the
improved Lyapunov second method. Section
IV presents  simulation and experimental
results obtained for a eight joints robot.

2. System Modeling

The dynamic model of a manipulator-plus-
payload is derived and the tracking control p
roblem is stated in this section.

Let us consider a non redundant joint
the nx1

generalized joint torque vector T, (t)is related

robotic manipulator in  which

to the nX1 generalized coordinate
q(t) by

dynamic equation of motion

joint

vector the following nonlinear

M(g)g+ Vig. 9)+ Glg) = 7,(t) o)

M(q) is the

positive-definite inertia matrix, V(g, ¢) is the

where nXxn symmetric

nx1 coriolis and centrifugal torque vector,

and G(g)is the nx1 gravitational loading
vector. discusses the findings and draws some
conclusions.

Equation (1) describes the manipulator
dynamics without any payload. Now, let the
nx1 vector X represent the end-effector
position and orientation coordinates in a
fixed

reference.

task-related  cartesian  frame  of
The cartesian position, velocity,
and acceleration vectors of the end-effector

are related to the joint variables by

X(t)=a(q)
X(t) = J(g)q(t)
X(t) = Jg, @)q(t) + J(q)g(t) 2

where ®(q) is the nX1 vector representing
the forward kinematics and J(q) = [6®(q)/aq]
is the nXn Jacobian matrix of the manipulator.
consider payload in the
that the
manipulator end-effector is firmly grasping a

Let us now

manipulator dynamics. Suppose

payload represented by the point mass AD,.
For the payload to move with acceleration

X(t) in the gravity field, the end-effector must
apply the nx1 force vector 7(t) given by

T(t)= AD,[z(t)+g] 3)

ROBOTIC
MANIPULATOR

¥

a31.
Fig. 1. Adaptive control scheme of Robotic

Manipulator with eight joint



where g is the nXxl1

acceleration vector. The end-effector requires

gravitational

the additional joint torque

7,0 = J(@)" T(1) 4)

where superscript T — denotes transposition.
Hence, the total joint torque vector can be
obtained by combining equations (1) and (4) as

J(@)"T(t)+ M(g)g+ Nlg,q) + Glg) = 7(t) (5)

Substituting equations (2) and (3) into

equation (5) yields

AD,J()" )+ Hg.q)a+ g]
+ M(q)g+ N(g,q) + G(q) = 7(t) ©6)
Equation (6) shows explicity the effect of

payload mass AD, on the manipulator

dynamics. This equation can be written as

[M(q) + A D,J(q)" J(@)lg+ [N(g,q)

T ADpJ(‘J)T:](qa Qg +1G@)+ ADpJ(q) gl = 7(t)

@

where the modified inertia  matrix

(M(q)+ AD,J(q)"J(g)] is symmetric and
positive-definite. Equation (7) constitutes a
model of the

nonlinear  mathematical

manipulator-plus-payload dynamics.

3. Controller Design

The manipulator control problem is to
develop a control scheme which ensures that
the joint angle vector q(t) tracks any desired
reference trajectory g{¢) ,where g{¢) is an

nx1 vector of arbitrary time functions. It is

reasonable to assume that these functions are

twice differentiable, that is, desired angular
velocity q,(t) and angular acceleration g, ()

exist and are directly available without

requiring further differentiation of ¢, (¢). It is
desirable for the manipulator control system
to achieve trajectory tracking irrespective of
payload massA D,,.

The controllers designed by the classical
linear control scheme are effective in fine
motion control of the manipulator in the
neighborhood of a nominal operating point
P,. the of the

P

o

During gross  motion

manipulator,  operating  point and
consequently the linearized model parameters
vary substantially with time. Thus it is
essential the of the

feedforward, feedback, and PI controllers to

to adapt gains
varying operating points and payloads so as
to ensure stability and trajectory tracking by
the total The
adaptation laws are developed in this section.
1 the

adaptive scheme

control  laws. required

Fig. represents block diagram of

control for  robotic

manipulator.
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Nonlinear dynamic equation (7) can be
written as

T(t>:M*<ADﬂQ7 ()+N(AD7(]7 ) (t)
+ G (AD,¢q)q(t) 8

where M*, N*, and G~ are nxn matrices
highly
functions of AD,, ¢, and q.

whose  elements — are nonlinear

In order to cope with changes in operating
point, the controller gains are varied with the
change of external working condition.

This vields the adaptive control law

m(t) = (K, (t)q, (t) + K5(t)q, (t) + Ko(t)g, (t)]
+ Ky () E#) + Kp(t)E(t)+ Py(t)] ©)

where K, (t), Kz(t), K(t) are feedfor
ward time-varying adaptive gains, and
Kp(t) and K (t) are the feedback adapti
ve gains, and K(t) is a time-varying con
trol signal corresponding to the nominal
operating point term, generated by a feedba
ck controller driven by position tracking error
Et) defined as ¢, (t) —q(t).

On applying adaptive control law (9) to
nonlinear model (8) as shown in Fig. 1, the
error differential equation can be obtained as

D'E(t)+
= P](t)

+(N'+P)E) +
+(D = Py)g,(t) +

+(G+P)E(t)
(N"= Pyt

M E,(t)+ N+ K, Et)+ (G + Kp)E,(t)

t
)+ (G —P.)g,(t)

=K, (t)+ (M = Kp)g, (t)+ (N — Kp)q, (t)

+(G" = K¢, (t) (10)

Defining the 2nx1 position—velocity error

vector SO=IEM,EM]" | equation(10) can be

written in the state-space form

) 0 I 0 0 ).
5(t)=[z 2)5(t)+[ ]qr(t){Zqu(t)
2 4
0 ). 0
+ z. q.@® + Z,

where,

(1D

Z =M NG+ Ky, 2y =— M7 N+KV]
=MT G -K, 2,=[MT ' [N"— K]
— M (¢~ K] and Z,=—[DT'[P)

Equation (11) constitutes an adjustable

system in the model reference adaptive control

frame-work. We shall now define the
reference model which embodies the desired
performance of the manipulator in terms of
the tracking error E®t). The
performance is that each joint tracking error

E(t) =q,,(t) —q(t)

others and satisfy a second-order homogeneous

desired
be decoupled from the
differential equation of the form

E(t)+26w,E(t)+w’E(t) =0
(=1, =, n (12)

where ¢, and w; are the damping ratio

and the undamped natural frequency.



The desired performance of the control
system is embodied in the definition of the
stable

reference model equation (12) as

following vector equation (13).

. 0o I,
%/0= -5 -5 % 13)

where Si=diag(@}) ang > =diag(25,@;)

are constant nXn  diagonal  matrices,

5,(t)=[E,(t), E()]" is the 2nx1 vector of
desired position and velocity errors, and the
subscript ' g ' denotes the reference model.

Because reference model is stable, equation

(13) has Lyapunov function's solution R
defined as following equation
RS+ S"TR=—N (14)

where N is symmetric positive definite matrix.
R is symmetric positive definite matrix
Rl Rl
RZ R}

defined as

We shall now state the adaptation laws
which
trajectory ¢, (t), the state of the adjust able

ensure that, for any reference

system, o(t) = [£(t), E(t)]” approaches &, =0
asymptotically. The controller adaptation laws
will be derived using the direct Lyapunov
method-based model reference adaptive control
technique. The adaptive control problem is to
adjust the controller continuously so that, for
any ¢, (¢t), the system state error 4(¢)

approaches asymptotically, ie. &(¢) —¢ (¢) as

t— oo,

Let the adaptation error be defined as
e=1[6(t)—o(t)], and then from equation(13),
the error differential equation(11) can be
defined as

_ 0 I, 0 I,
= +
¢ _Sl _SZ y Zl_Sl ZZ_S2

{_23}1, +(_‘;Jq', +(_25Jq, *[-2(,]

(15)

The controller adaptation laws shall be
derived by ensuring the stability of error
dynamics equation (15). To this end, let us
define a scalar positive-definite Lyapunov
function as

L=06"Ro+trace[AZ — SN, (A2 — S,]
+trace[AZ,— S, )TN, [A Z,— S,
+trace[AZ)TN; (A Z)
+trace[AZ)TN,[A Z]
+trace [AZJINO [AZ)]
+az Nz

(16)
where AZ, =2,—2,, ANZy=2,—2,,
ANy = Z3*Z3*7AZ4 = Z4*Z4*a ANy = Z;

—Z;, ANZy = Zg— Zg and R is the solution
of the Lyapunov equation for the reference
model, [N, -+, Ng] are arbitrary symmetric
positive-definite constant nXn matrices, and
the matrices [V, ---, N;] are functions of
time which will be specified later.  Now,
differencing V along error trajectory and
simplifying the result, We obtain
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L=6"No +2Z |W+ N.AZ)|—2Z N, Z,
+2trace (2, — S,)"[— WET+ Ny,A Z)]— Z;TNZA%
+2trace[Z, — S| [— WET+ NyA Z,] — Z;T]\I;;AZ3
+2trace Z |- Wl + N\AZ)— 7, TN,A Z,
+ 2trace Z;'|— Wq: + N,A Z] *ZJJNGAZ)
+2trace 21~ Wiy, + NyAZy)— 7 "N,AZ,
(17)
where AZ=2-7 and N, is given by the

Lyapunov equation (14) and
W=—[Ry,Ry]6 = [Ry, Ry|e = RyE+ R,E
noting that ¢, =0 and 6= —e. Now, for

the
asymptotically,

vanish
e(t)—e, (t), the

adaptation  error ft) to

ie., for

function Z must be negative-definite in 4.
For this purpose, we set

W+ N, Z,— H Z, =0

— WE+ NyZy— HyZy = 0
— WE' + NyZy— Hy Zy = 0
Wl + N, Z— H,Z, = 0
Wy, + Ny Zs— HyZ, =0

(19

From the equation (19), We obtain

(20)

In the case of definition of equation (19)

and (20), L reduces to
L= 6TH+ 22 TW—2tr[2, T WET) — 2tr[2, T WET)
—otr[2 Tt — 2tr 2T W | —2tr 2t T W] (21)

. 7

Now, let us choose Zl*, as follows

Zl=— N, W
Z,=— N, WE"
Zi=— N WE"
Z4* = Nl* W(IrT
Z5* = Nl* quT
Zy == N, Wi,

(22)

* * . .o, .
where N;, -+, Ny are symmetric positive
semi-definite constant nxn matrices. Equation

(21) simplifies to

L= 0" No— 2 W' H W—2( W W) ETH] E—2( W W) E"H}

—2(WIW G H g —2(W W)g H, g — 20w W)y H g,
(23)

which is a negative definite function of ¢ in
view of semi-definiteness  of

*
Ny, -

the positive
, N . Consequently, the error differential
equation (15) is asymptotically stable; implying
that e(t) — ¢, (t) (or 6(t)—0) as t — oo.
Thus, from equations (20) and (22) adaptation
laws are found to be

Z,=— N, ‘W—H'W
Z, = Ny (\WE+ H, = [WE

Zy =Ny [ WET +H;E[WE7]

. _ « d
Zy=—N, I[WQTT]_HAL E[W%T]



. )
Zs == Nj 1[W%‘T} — H; dt [qu]
o . d
Zy == Ny '[Wa, |~ Hy W, ]
(24)

Now, it is assumed that the relative change
of the robot model matrices in each sampling
interval is much smaller than that of the
controller gains.

This implies that the

robot  model

parameters M *, V*, and G can be treated

as unknown and slowly time-varying
compared with the controller gains.

This assumption is justifiable in practice
since the robot model changes noticeably in
the (50 msec) time-scale during rapid motion;
whereas the controller gains can change
significantly in the (10 msec) time-scale of
the sampling interval. Hence there is typically
two orders-of-magnitude difference between
the controller and the robot time-scales. the
adaptive controller continues to perform
remarkably well. From the above assumption,

Z; can be derived as following

Z ==K, (25)
Zy~ M K]
Zy~ MK
Z4 ~— [M*]fl.G’
Zy~— M1 'V
Zo~— MM

In order to make the controller adaptation

laws independent of the robot matrix, D*, the
H; matrices in equations (23) are chosen as

H =X\ 'M (26)
Hy, =p, M
Hy=v,'M
H=c'M
=b ‘M
Hy=a] ‘M

where A, p;, vy, ¢, b and a, are

positive scalars. And the H  matrices in
equation (24) are chosen as

H1 =N M]7! 27)
H2 po M)
H3 =0, (M1
H4 =cy M}
H, =by (M}
Hy=a,[M]!

where Ay, Py, Vo, Co, by and a, are zero

or positive scalars.

Thus, from the equation (24) - (27), the
gains of adaptive control low in equation (9)
are defined as follows:

K,(t)=q [kalE-&-kaZE][ZJT]T+a2/(:[kmE+kaE][ér]rdt+ku(0)

(28)

T, [ by Bk Bl e+ 1, (0)
29)

Ko(t) = ¢ by B+ k,Hlg, ) +c2/ by Bk, Ellg, )t +, 0)
(30)
K[(t):)‘Q[kﬂE]+)‘1f‘[k;,1E1Tdt+ki(0)

0

3D

(t) =k, [k, E+/c2E][E]1+k/ ko, B+ ko B Tdt + &, (0)

(32)

Ky(t)=0b,[k, E+kb2E][

Kplt
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Ky (t) = v, [k, B+, AL + v, / [k, B+ &, B8 dt +, (0)

(33)
where [k, k0 ke kpske ] and (kg ke
ko koo ko] are positive and  zero/positive

scalar adaptation gains, which are chosen by
the designer to reflect the relative significance

of position and velocity errors £ and E.

4. Simulation

This section represents the simulation
results of the position and velocity control of
a eight-link robotic manipulator by the
proposed adaptive control algorithm, as
shown in Fig.2, and discusses the advantages
of using joint controller based-on DSPs for
motion control of a dual-arm robot. The
adaptive scheme developed in this paper will
be applied to the control of a dual-arm
robot with eight axes. Fig.2 represents link
coordinates of the dual-arm robot. Table I
lists values of link parameters of the robot.

3rd-axis molor cover (rear side)

4th axis (J4) \
///j.\ ___ 4th-axis cover
Second amover | () e =

Nl

Y/
Y A
N () 2} 11y
Hlé i
6th axis (J6) ()

5th axis (J5)

2nd-axis motor cover (rear side)

B
Base — | 1staxis (J1)

a32. 2R9 93 HuA

Fig.2. Link coordinates of robot arm

Table T lists motor parameters. Consider
the dual-arm robot with the end-effector
grasping a payload of mass AD,. The
emulation set-up consists of a TMS320 evm
DSP board and a Pentium III personal
The TMS320 evm cardisan
application development tool which is based
on the TI's TMS320C80 floating-point DSP

chip with 50ns instruction cycle time. The

computer(PC).

adaptive control algorithm is loaded into the
DSP board, while the manipulator, the drive
and the command generator are
in C
language. The communication between the

system,
simulated in the host computer
PC and the DSP board is done via interrupts.
These
operating system called A shell which is an

interrupts are managed by an
extension of Windows9x. It is assumed that
drive systems are ideal, that is, the actuators
are permanent magnet DC motors which
provide torques proportional to actuator
currents, and that the PWM inverters are able
to generate the equivalent of their inputs.

In all simulations the load is assumed to
be unknown. The adaptive control algorithm
equation  (10)

adaptation rules (28) - (33) as are used for

given in and parameter
the motion control of robot. The parameters
associated with adaptation gains are selected
by hand turning and iteration as

A = 0.5, Ay =0.02, a; =0.2,
ay =0.3, b, =0.01, by, = 0.3,
¢, =0.05, ¢ =01, K =10, K,=20,
u; = 0.1, uy = 10, K, =107,

K,=10""* K, =20, K,=30, K, =10,



K,=15, K, =05, K,=04, K, =0.01,
and K, —=0.05.

¥ 12X I3 dvH
Table I Link parameters of robot.

Mass of Length of | Inertia of | Gear ratio of

link(kg) link(kg) link(kg) link
ml [15.01 | 11 | 035 | I1 |0.15]| rl | 1/100
m2| 899 | 12 | 0.3 |12 |0.08| r2 | 1/80
m3| 3.0 [ I3 |0.18 | I3 [0.05] r3 | 1/200
m4| 1.0 | 14 |0.01 [ 14 |0.01 | r4 | 1/75
m5|15.07 | IS | 035 | 15 [0.15] 15 | 1/100
m6| 899 [ 16 | 03 [ 16 [0.08] r6 | 1/80

¥ 2 289 =2H g

Table I Motor parameters of robot

Al.rlat}lre

Rotor inzenia Torque constant Back emf constant winding
(kg'm’) (K m/a) (V sirad) resistanc
¢(ohms)

Jml | 5.00x10° | Kal | 21.48x10% | Kbl | 214.86x10° | Ral| 1.5
Jm2 | 1.37x10° | Ka2 | 2001x10% | Kb 2 | 200.54x10° | Ra2 | 42
Jm3 | 0.88x10° | Ka3 | 20.01x10% | Kb 3 | 200.54x10° | Ra3| 9
Jmd | 023x10° | Kad | 17.66x10% | Kb 4 | 176.66x10° | Ra4 [ 20
Jm5 | 5.00x10° | Ka5 | 2148x10% | Kb 5 | 214.86x10° | Ra5| 1.5
Jm6 | 1.37x10° | Ka6 | 20.01x10% | Kb 6 | 200.54x10° | Ra6| 42

It is assumed that w; = w, = 10rad/sec,
& =& =1, and S, =801, S, =257 in the
reference model. The sampling time is set as
0.001
evaluate the position and velocity control of

sec. Simulations are performed to

each joint under the condition of payload
variation, inertia parameter uncertainty, and
reference  trajectory  variation. Control
the

variation is tested for four different position

performance  for reference  trajectory
reference trajectories C and velocity reference
trajectories M for each joint. As can be seen
in Figs. 3 to 6, position reference trajectories
C and velocity reference trajectory D consist
of four different trajectories for joints 1, 2, 3,

and 4.

The performance of DSP-based adaptive
controller is evaluated in tracking errors of
the position and velocity for the four joints.

The results of trajectory tracking of each
joint in the different position cases are
shown in Fig.'s 3~6. Fig. 3 shows results of
angular  position trajectory tracking and
parameter uncertainties (6%) for each joint
with

uncertainties (6%) for reference trajectory C.

a 4 kg payload and parameter
Fig. 4 shows position trajectory tracking error
for each joint with a 4 kg payload and
parameter uncertainties (6%) As can be seen
from these results, the DSP-based adaptive
controller  represents extremely  good
performance with very small tracking error
and fast adaptation response under the
payload and parameter uncertainties.

Fig. 5. shows results of angular velocity
tracking at each joint with payload (4 kg,
(6%), the

reference trajectory D. Fig. 6 shows results of

parameter  uncertainties for
angular velocity tracking error at each joint
with payload (4 kg), parameter uncertainties
(6%) for reference trajectory D. As can be
seen from Fig.'s 5 and 6, the proposed
adaptive controller represents good
performance in the position and velocity at
each for inertia

joint payload variation,

parameter uncertainty, and the change of
reference trajectory. These simulation results
that this DSP-based adaptive

controller is very robust and suitable to

illustrate

real-time control due to its fast adaptation
and simple structure.
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Fig. 5. (a)-(d) Velocity tracking performance of each
joint with 10kg payload and inertia parameter
uncertainty (10%) for reference trajectory D.
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The performance test of the proposed
adaptive controller has been performed for
the dual-arm robot at the joint space and
cartesian space. At the cartesian space, it has
been tested for the peg-in-hole tasks,

repeating precision tasks, and trajectory
tracking for B-shaped reference trajectory. At
the joint space, it has been tested for the
trajectory tracking of angular position and
velocity for a dual-arm robot made in
Samsung Electronics Company in Korea. Fig.
7  represents  the

experimental  set-up

equipment. To implement the proposed
adaptive controller, we used our own
developed TMS320C80 assembler software.
Also, the TMS320C80 emulator has been used
in experimental set-up. At each joint of a
dual-arm robot, a harmonic drive (with gear
reduction ratio of 100 : 1 for joint 1 and 80

1 for joint 2) has been used to transfer
power from the motor, which has a resolver
attached to its shaft for sensing angular
velocity with a resolution of 8096
Fig. 8 block
diagram of the interface between the PC,
DSP, and robot arm.

The performance test in the joint space is

(pulses/rev). represents the

performed to evaluate the position and

velocity control performance of the four
joints under the condition of payload
variation, inertia parameter uncertainty, and

change of reference trajectory.
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5. Conclusions

A new robust control scheme was
proposed of robotic manipulators with six
joint for forging process automation. The
control laws are derived from the improved
Lyapunov second method. The simulation
results show that the proposed controller is
inertia

robust to the payload variation,

parameter  uncertainty, and change of
reference trajectory. This controller has been
found to be suitable to the real-time control

of robot system.
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