• 제목/요약/키워드: fluorescent proteins

검색결과 152건 처리시간 0.023초

Fluorescent and Luminescent Proteins Derived from Marine Organisms: Functions and Applications

  • Sehyeok, Im;Jisub, Hwang;Hackwon, Do;Bo-Mi, Kim;Sung Gu, Lee;Jun Hyuck, Lee
    • 한국해양생명과학회지
    • /
    • 제7권2호
    • /
    • pp.74-85
    • /
    • 2022
  • Organisms constituting a large proportion of marine ecosystems, ranging from bacteria to fish, exhibit fluorescence and bioluminescence. A variety of marine organisms utilize these biochemically generated light sources for feeding, reproduction, communication, and defense. Since the discovery of green fluorescent protein and the luciferin-luciferase system more than a century ago, numerous studies have been conducted to characterize their function and regulatory mechanism. The unique properties of fluorescent and bioluminescent proteins offer great potential for their use in a broad range of applications. This short review briefly describes the functions and characteristics of fluorescent and bioluminescent proteins, in addition to summarizing the recent status of their applications.

Expression of various fluorescent protein and their production in shake flasks

  • Park, So-Jung;Han, Kyung-Ah;Rhee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.408-411
    • /
    • 2005
  • 대장균을 이용하여 형광단백질을 형질전환하고 배양하면서 그 특성을 관찰하고 형광세기 및 형광 단백질의 크기를 조사하였다.

  • PDF

Visualization of Multicolored in vivo Organelle Markers for Co-Localization Studies in Oryza sativa

  • Dangol, Sarmina;Singh, Raksha;Chen, Yafei;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • 제40권11호
    • /
    • pp.828-836
    • /
    • 2017
  • Eukaryotic cells consist of a complex network of thousands of proteins present in different organelles where organelle-specific cellular processes occur. Identification of the subcellular localization of a protein is important for understanding its potential biochemical functions. In the post-genomic era, localization of unknown proteins is achieved using multiple tools including a fluorescent-tagged protein approach. Several fluorescent-tagged protein organelle markers have been introduced into dicot plants, but its use is still limited in monocot plants. Here, we generated a set of multicolored organelle markers (fluorescent-tagged proteins) based on well-established targeting sequences. We used a series of pGWBs binary vectors to ameliorate localization and co-localization experiments using monocot plants. We constructed different fluorescent-tagged markers to visualize rice cell organelles, i.e., nucleus, plastids, mitochondria, peroxisomes, golgi body, endoplasmic reticulum, plasma membrane, and tonoplast, with four different fluorescent proteins (FPs) (G3GFP, mRFP, YFP, and CFP). Visualization of FP-tagged markers in their respective compartments has been reported for dicot and monocot plants. The comparative localization of the nucleus marker with a nucleus localizing sequence, and the similar, characteristic morphology of mCherry-tagged Arabidopsis organelle markers and our generated organelle markers in onion cells, provide further evidence for the correct subcellular localization of the Oryza sativa (rice) organelle marker. The set of eight different rice organelle markers with four different FPs provides a valuable resource for determining the subcellular localization of newly identified proteins, conducting co-localization assays, and generating stable transgenic localization in monocot plants.

Quantum Chemistry Based Arguments about Singlet Oxygen Formation Trends from Fluorescent Proteins

  • Park, Jae Woo;Rhee, Young Min
    • Rapid Communication in Photoscience
    • /
    • 제5권2호
    • /
    • pp.18-20
    • /
    • 2016
  • Through quantum chemical means, we inspect the energetics of the singlet oxygen formation with fluorescent proteins in their triplet excited states. By placing an oxygen molecule at varying distances, we discover that the energetic driving force for the singlet oxygen formation does not depend strongly on the chromophore $-O_2$ distance. We also observe that the chromophore vibrations contribute much to the energy gap modulation toward the surface crossing. Based on our computational results, we try to draw a series of rationalizations of different photostabilities of different fluorescent proteins. Most prominently, we argue that the chance of encountering a surface crossing point is higher with a protein with a lower photostability.

FMN-Based Fluorescent Proteins as Heavy Metal Sensors Against Mercury Ions

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Jung, Seunho;Bae, Dong-Ho;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.530-539
    • /
    • 2016
  • Bacterial light-oxygen-voltage-sensing photoreceptor-derived flavin mononucleotide (FMN)-based fluorescent proteins act as a promising distinct class of fluorescent proteins utilized for various biomedical and biotechnological applications. The key property of its independency towards oxygen for its chromophore maturation has greatly helped this protein to outperform the other fluorescent proteins such as GFP and DsRed for anaerobic applications. Here, we describe the feasibility of FMN-containing fluorescent protein FbFP as a metal-sensing probe by measuring the fluorescence emission changes of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the mercury-sensing ability of FbFP protein and the possible amino acids responsible for metal binding. A ratiometric approach was employed here in order to exploit the fluorescence changes observed at two different emission maxima with respect to Hg2+ at micromolar concentration. The engineered variant FbFPC56I showed high sensitivity towards Hg2+ and followed a good linear relationship from 0.1 to 3 μM of Hg2+. Thus, further engineering with a rational approach would enable the FbFP to be developed as a novel and highly selective and sensitive biosensor for other toxic heavy metal ions as well.

세포내 소수성 물질 이동에서 막과 세포내 결합단백질의 역살 : 지방산 결합 단밸직과 장쇄 지방산 (The Role of Membranes and Intracellular Binding Proteins in Cytoplasmic Transport of Hydrophobic Molecules : Fatty Acid Binding Proteins and Long Chain Fatty Acids)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • 제30권6호
    • /
    • pp.658-668
    • /
    • 1997
  • Path of a small hydrophobic molecule through the aqueous cytoplasma is not linear. Partition may favor membrane binding by several orders of magnitude : thus significant membrane association will markedly decrease the cytosolic transport rate. The presence of high concentration of soluble binding proteins for these hydrophobic molecules would compete with membrane association and thereby increase transport rate. For long chain fatty acid molecules, a family of cytosolic binding proteins collectively known as the fatty acid binding proteins(FABP), are thought to act as intracellular transport proteins. This paper examines the mechanism of transfer of fluorescent antyroyloxy-labeled fatty acids(AOFA) from purified FABPs to phosholipid membranes. With the exception of the liver FABP, AOFA is transferred from FABP by collisional interaction of the protein with a acceptor membrane. The rate of transfer increased markedly when membranes contain anionic phospholipids. This suggests that positively charged residues on the surface of the FABP may interact with the membranes. Neutralization of the surface lysine residues of adipocyte FABP decreased fatty acid transfer rate, and transfer was found to proceed via aqueous diffusion rather than collisional interaction. Site specific mutagenesis has further shown that the helix-turn-helix domain of the FABP is critical for interaction with anionic acceptor membranes. Thus cytosolic FABP may function in intracellular transport of fatty acid to decrease their membranes association as well as to target fatty acid to specific subcellular sites of utilization.

  • PDF

In Vitro Combinatorial Mutagenesis of the 65th and 222nd Positions of the Green Fluorescent Protein of Aequarea victoria

  • Nakano, Hideo;Okumura, Reiko;Goto, Chinatsu;Yamane, Tsuneo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권5호
    • /
    • pp.311-315
    • /
    • 2002
  • By the in vitro combinatorial mutagenesis, which is a sequential reaction of PCR mutagenesis and in vitro coupled transcription/translation with Escherichia coli S30 extract, S65 and E222 of green fluorescent protein of Aequarea victoria were comprehensively changed to all possible combinations of amino acids, thus totally 400 mutant (including a wild type) proteins were simultaneously produced and their fluorescent properties were analyzed. Although a few mutations had been reported so far at the 222nd position, replacement E222 to all other19 amino acids gave fluorescent signal to the mutants by changing Ser 65 to Ala together. Among the mutants, replacement to G, A, S, Q, H and C gave relatively high fluorescence. The in vitro combinatorial mutagenesis, therefore, has been proved valuable for comprehensive structure-function studies of proteins.

Backbone Cyclization of Flavin Mononucleotide-Based Fluorescent Protein Increases Fluorescence and Stability

  • Tingting Lin;Yuanyuan Ge;Qing Gao;Di Zhang;Xiaofeng Chen;Yafang Hu;Jun Fan
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1681-1691
    • /
    • 2023
  • Flavin mononucleotide-binding proteins or domains emit cyan-green fluorescence under aerobic and anaerobic conditions, but relatively low fluorescence and less thermostability limit their application as reporters. In this work, we incorporated the codon-optimized fluorescent protein from Chlamydomonas reinhardtii with two different linkers independently into the redox-responsive split intein construct, overexpressed the precursors in hyperoxic Escherichia coli SHuffle T7 strain, and cyclized the target proteins in vitro in the presence of the reducing agent. Compared with the purified linear protein, the cyclic protein with the short linker displayed enhanced fluorescence. In contrast, cyclized protein with incorporation of the long linker including the myc-tag and human rhinovirus 3C protease cleavable sequence emitted slightly increased fluorescence compared with the protein linearized with the protease cleavage. The cyclic protein with the short linker also exhibited increased thermal stability and exopeptidase resistance. Moreover, induction of the target proteins in an oxygen-deficient culture rendered fluorescent E. coli BL21 (DE3) cells brighter than those overexpressing the linear construct. Thus, the cyclic reporter can hopefully be used in certain thermophilic anaerobes.

아미노-말단 리보플라빈 생성효소 단백질의 형광 특성 (Spectrofluorometric Characteristics of the N-Terminal Domain of Riboflavin Synthase)

  • 김류련;이정환;남기석;고경원;이찬용
    • 미생물학회지
    • /
    • 제47권1호
    • /
    • pp.14-21
    • /
    • 2011
  • 리보플라빈 생성효소(riboflavin synthase)는 기질인 두 분자의 6,7-dimetyl-8-ribityllumazine과 결합 후, 4-탄소 단위(4-carbon unit)의 자리 옮김 반응을 거쳐 한 분자의 리보플라빈과 한 분자의 pyrimidine 유도체를 형성하는 반응을 촉매한다. 대장균(Escherichia coli) 리보플라빈 생성효소의 아미노-말단 도메인 절반(N-terminal domain half)과 카복시-말단 도메인 절반(C-terminal domain half)은 매우 유사한 내부 자체 아미노산 서열(intra-molecular amino acid sequence)을 갖는다. 아미노-말단 영역 리보플라빈 생성효소(N-RS) 단백질의 구조와 형광 특성을 알아보기 위하여 중합효소 연쇄 반응과 위치지정 돌연변이를 통하여 10개 이상의 돌연변이 아미노-말단 리보플라빈 생성효소 단백질을 코드 하는 유전자를 증폭시켜 pQE30 벡터에 삽입한 재조합 플라스미드를 제조하여, 과발현시킨 후 분리 정제하였다. 대부분의 아미노-말단 도메인 리보플라빈 생성효소의 돌연변이 단백질들은 야생형과 같이 형광성 리간드인 6,7-dimetyl-8-ribityllumazine 혹은 리보플라빈과 결합할 수 있는 능력을 지니고 있었으나, N-RS C47D, N-RS ET66,67DQ 돌연변이 단백질의 경우는 리간드와의 결합능력이 현저히 떨어져 형광을 띠지 않았다. 대부분의 돌연변이 단백질들의 형광 세기는 야생형 단백질(N-RS wt)보다 낮았으나, N-RS C48S는 예외적으로 야생형 단백질에 비해 2배 이상의 형광세기를 가졌다. 이와 같은 결과를 바탕으로 리보플라빈 생성효소와 형광성 리간드 사이의 상호작용을 예측 할 수 있으며, N-RS C48S 돌연변이 단백질의 형광성을 활용하여 효과적으로 효소 저해제를 발굴할 수 있는 고속다중 스크리닝 법(high-throughput screening system)으로써 활용될 수 있을 것이다.

Eastern Staining: A Simple Recombinant Protein Detection Technology Using a Small Peptide Tag and Its Counter Partner Which is a Fluorescent Compound

  • Lee, Jae-Jung;Kim, Jun-Young;Zhai, Duanting;Yun, Seong-Wook;Chang, Young-Tae
    • Interdisciplinary Bio Central
    • /
    • 제4권2호
    • /
    • pp.5.1-5.9
    • /
    • 2012
  • Small peptide tags such as c-myc, HA, or FLAG tag have facilitated efficient Western-blotting of proteins of interest especially when specific antibodies for the proteins are not available. However, the conventional Western-blotting requires the multi-steps process taking at least several hours up to two days. With examples of various applications, here we show a convenient and time-saving method for protein detection which employs a fluorescent chemical BDED and its binding peptide RC-tag. And we propose "Estern staining", as a standard term for protein detection method using fluorescent chemicals and their binding small peptide tags. Eastern staining may substitutes for the time-consuming "immuno-staining" in many versatile applications.