Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0045

Visualization of Multicolored in vivo Organelle Markers for Co-Localization Studies in Oryza sativa  

Dangol, Sarmina (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University)
Singh, Raksha (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University)
Chen, Yafei (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University)
Jwa, Nam-Soo (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University)
Abstract
Eukaryotic cells consist of a complex network of thousands of proteins present in different organelles where organelle-specific cellular processes occur. Identification of the subcellular localization of a protein is important for understanding its potential biochemical functions. In the post-genomic era, localization of unknown proteins is achieved using multiple tools including a fluorescent-tagged protein approach. Several fluorescent-tagged protein organelle markers have been introduced into dicot plants, but its use is still limited in monocot plants. Here, we generated a set of multicolored organelle markers (fluorescent-tagged proteins) based on well-established targeting sequences. We used a series of pGWBs binary vectors to ameliorate localization and co-localization experiments using monocot plants. We constructed different fluorescent-tagged markers to visualize rice cell organelles, i.e., nucleus, plastids, mitochondria, peroxisomes, golgi body, endoplasmic reticulum, plasma membrane, and tonoplast, with four different fluorescent proteins (FPs) (G3GFP, mRFP, YFP, and CFP). Visualization of FP-tagged markers in their respective compartments has been reported for dicot and monocot plants. The comparative localization of the nucleus marker with a nucleus localizing sequence, and the similar, characteristic morphology of mCherry-tagged Arabidopsis organelle markers and our generated organelle markers in onion cells, provide further evidence for the correct subcellular localization of the Oryza sativa (rice) organelle marker. The set of eight different rice organelle markers with four different FPs provides a valuable resource for determining the subcellular localization of newly identified proteins, conducting co-localization assays, and generating stable transgenic localization in monocot plants.
Keywords
biolistic bombardment; cell organelle markers; colocalization; fluorescent proteins; EYFP; ECFP; GFP; mRFP; subcellular localization; rice;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Krause, K., Kilbienski, I., Mulisch, M., Rodiger, A., Schafer, A., and Krupinska, K. (2005). DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett. 17, 3707-3712.
2 Komatsu, S., Konishi, H., and Hashimoto, M. (2007). The proteomics of plant cell membranes. J. Exp. Bot. 58, 103-112.
3 Li, S., Ehrhardt, D.W., and Rhee, S.Y. (2006). Systematic analysis of Arabidopsis organelles and a protein localization database for facilitating fluorescent tagging of full-length Arabidopsis proteins. Plant Physiol. 141, 527-539.   DOI
4 Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., Luu, D.T., Maurel, C., and Lin. J. (2011). Single-molecule analysis of PIP2.1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23, 3780-3797.   DOI
5 Stadler, C., Rexhepaj, E., Singan, V.R., Murphy, R.F., Pepperkok, R., Uhlen, M., Simpson, J.C., and Lundberg, E. (2013). Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat. Methods 10, 315-323.   DOI
6 Tamura, T., Kuroda, M., Oikawa, T., Kyozuka, J., Terauchi, K., Ishimaru, Y., Abe, K., and Asakura, T. (2009). Signal peptide peptidases are expressed in the shoot apex of rice, localized to the endoplasmic reticulum. Plant Cell Rep. 28, 1615-1621.   DOI
7 Tanz SK, Castleden I, Small ID, Millar AH. (2013). Fluorescent protein tagging as a tool to define the subcellular distribution of proteins in plants. Front. Plant Sci. 4, 214.
8 Luo, B., and Nakata, P.A. (2012). A set of GFP organelle marker lines for intracellular localization studies in Medicago truncatula. Plant Sci. 188-189, 19-24.   DOI
9 Lilley, K.S., and Dupree, P. (2006). Methods of quantitative proteomics and their application to plant organelle characterization. J. Exp. Bot. 57, 11493-11499.
10 Lunn, J.E. (2007). Compartmentation in plant metabolism. J. Exp. Bot. 58, 35-47.
11 Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L., and Lukyanov, S.A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969-973.   DOI
12 Moog, D., Stork, S., Reislohner, S., Grosche, C., and Maier, U.G. (2015). In vivo localization studies in the stramenopile alga Nannochloropsis oceanica. Protist 166, 161-171.   DOI
13 Muench, D.G., and Mullen, R.T. (2003). Peroxisome dynamics in plant cells: a role for the cytoskeleton. Plant Sci. 64, 307-315.
14 Weaver, L.M., Froehlich, J.E., and Amasino, R.M. (1999). Chloroplast-targeted ERD1 protein declines but its mRNA increases during senescence in Arabidopsis. Plant Physiol. 119, 1209-1216.   DOI
15 Teixeira, F.K., Menezes-Benavente, L., Galvao, V.C., Margis, R., and Margis-Pinheiro, M. (2006). Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224, 300-314.   DOI
16 Tobin, A.K., and Yamaya, T. (2001). Cellular compartmentation of ammonium assimilation in rice and barley. J. Exp. Bot. 52, 591-594.   DOI
17 Wang, Y., Wu, J., Kim, S.G., Kim, S.T., and Kang, K.Y. (2013). A transient gene expression protocol for subcellular protein localization and protein secretion analyses in rice. Protocol. Exch. 064.
18 Wu, Q., Luo, A., Zadrozny, T., Sylvester, A., and Jackson, D. (2013). Fluorescent protein marker lines in maize: generation and applications. Int. J. Dev. Biol. 57, 535-543.   DOI
19 Singh, R., Lee, M.O., Lee, J.E., Choi, J., Park, J.H., Kim, E.H., Yoo, R.H., Cho, J.I., Jeon, J.S., Rakwal, R., et al. (2012). Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system. Plant Physiol. 160, 477-487.   DOI
20 Nakagawa, T., Suzuki, T., murata, S., Nakamura, S., Hino, T., Maeo, K., Tabata, R., Kawai, T., Tanaka, K., Niwa, Y., et al. (2007). Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 71, 2095-2100.   DOI
21 Nakazono, M., Tsuji, H., Li, Y., Saisho, D., Arimura, S., Tsutsumi, N., and Hirai, A. (2000). Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions. Plant Physiol. 124, 587-598.   DOI
22 Saito, C., Ueda, T., Abe, H., Wada, Y., Kuroiwa, T., Hisada, A., Furuya, M., and Nakano, A. (2002). A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant J. 29, 245-255.   DOI
23 Wu, T.M., Lin, K.C., Liau, W.S., Chao, Y.Y., Yang, L.H., Chen, S.Y., Lu, C.A., and Hong, C.Y. (2016). A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa L.). Plant Mol. Biol. 90, 107-115.   DOI
24 Nelson, B.K., Cai, X., and Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126-1136.   DOI
25 O'Rourke, N.A., Meyer, T., and Chandy, G. (2005). Protein localization studies in the age of 'Omics'. Curr. Opin. Chem. Biol. 9, 82-87.   DOI
26 Richly, E., and Leister, D. (2004). An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene 329, 11-16.   DOI
27 Saint-Jore-Dupas, C., Nebenfuhr, A., Boulaflous, A., Follet-Gueye, M.L., Plasson, C., Hawes, C., Driouich, A., Faye, L., and Gomord, V. (2006). Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell 18, 3182-3200.   DOI
28 Singh, R., Lee, J.E., Dangol, S., Choi, J., Yoo, R.H., Moon, J.S., Shim, J.K., Rakwal, R., Agrawal, G.K., and Jwa, N.S. (2014). Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system. Proteomics 14, 105-115.   DOI
29 Zhang, Y., Su, J., Duan, S., Ao, Y., Dai, J., Liu, J., Wang, P., Li, Y., Liu, B., Feng, D., et al. (2011). A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30.   DOI
30 Xia, J., Yamaji, N., and Ma, J.F. (2013). A plasma membrane-localized small peptide is involved in rice aluminum tolerance. Plant J. 76, 345-355.
31 Dunkley, T.P., Hester, S., Shadforth, I.P., Runions, J., Weimar, T., Hanton, S.L., Griffin, J.L., Bessant, C., Brandizzi, F., Hawes, C., et al. (2006). Mapping the Arabidopsis organelle proteome. Proc. Natl. Acad. Sci. USA 103, 6518-6523.   DOI
32 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C. (1994). Green fluorescent protein as a marker for gene expression. Science 263, 802-805.   DOI
33 Collings, D.A. (2013). Subcellular localization of transiently expressed fluorescent fusion proteins. Methods Mol. Biol. 1069, 227-258.
34 Cutler, S.R., Ehrhardt, D.W., Griffitts, J.S., and Somerville, C.R. (2000). Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. USA 97, 3718-3723.   DOI
35 Day, R.N., and Davidson, M.W. (2009). The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 2887-2921.   DOI
36 Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8, 870-900.   DOI
37 Fang, R.X., Nagy, F., Sivasubramaniam, S., and Chua, N.H. (1989). Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1, 141-50.   DOI
38 Henriques, M.X., Catalao, M.J., Fi gueiredo, J., Gomes, J.P., and Filipe, S.R. (2013). Construction of improved tools for protein localization studies in Streptococcus pneumoniae. PLoS One 8, e55049.   DOI
39 Jauh, G.Y., Phillips, T.E., and Rogers, J.C. (1999). Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11, 1867-1882.   DOI
40 Hezlewoaod, J.L., Tonti-Filippini, J.S., Gout, A.M., Day, D.A., Whelan, J., and Millar, A.H. (2004). Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16, 241-256.   DOI
41 Kalderon, D., Roberts, B.L., Richardson, W.D., and Smith, A.E. (1984). A short amino acid sequence able to specify nuclear location. Cell 39, 499-509.   DOI