
 
Introduction 

Light produced by living organisms is an attractive subject in 
multidisciplinary science. Both fluorescence and bioluminescence 
have been intensively investigated in bacteria, fungi, insects, and 
marine organisms (Lloyd, 1983; Meyer-Rochow, 2007; Haddock et 
al., 2010; Widder, 2010). In particular, marine organisms emitting 
fluorescence or bioluminescence have been intensively investigated 
for centuries, since the first report on the role of oxygen in bacterial 
bioluminescence (Boyle, 1667). The habitats of these organisms 
are broadly distributed on Earth, from the deep sea to the polar 
regions (Haddock et al., 2010). Luminescence is one of the three 
major light sources-sunlight, moonlight, and luminescence-for a 
broad spectrum of marine life, and facilitates a number of their 
functions, such as those of feeding, reproduction, communication, 
and defense (Hastings, 1983; Wood et al., 1989; Widder, 1999; 
Haddock et al., 2009). 

    
Light emissions from living organisms are derived from two 

distinct systems: fluorescence and bioluminescence. Fluorescence 
is emitted by a fluorescent photoprotein, wherein a chromophore 
absorbs light and converts it into a longer wavelength. The green 
fluorescent protein (GFP) was concomitantly discovered in the jelly- 
fish Aequorea victoria, when a functional study of the photoprotein 
aequorin was carried out (Shimomura et al., 1962; Shimomura, 
1979). Later investigations identified several members of the GFP 
superfamily with similar protein structures, although the protein 
family consists of different protein classes (Yue et al., 2016). Bio- 
luminescence systems, on the other hand, are more complicated. 
In general, they require a combination of luciferin and luciferase. 
The luciferin substrate is activated by the luciferase enzyme, 
which results in the excited state substrate resuming the ground 
state and emitting luminescence in the process. To date, only 11 
systems of luciferin-luciferase pairs have been elucidated, although 
more than 30 bioluminescence systems have been identified 
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 Organisms constituting a large proportion of marine ecosystems, ranging from bacteria 
to fish, exhibit fluorescence and bioluminescence. A variety of marine organisms utilize 
these biochemically generated light sources for feeding, reproduction, communication, 
and defense. Since the discovery of green fluorescent protein and the luciferin-luciferase 
system more than a century ago, numerous studies have been conducted to characterize 
their function and regulatory mechanism. The unique properties of fluorescent and 
bioluminescent proteins offer great potential for their use in a broad range of applications. 
This short review briefly describes the functions and characteristics of fluorescent and 
bioluminescent proteins, in addition to summarizing the recent status of their applications. 
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(Kaskova et al., 2016). 
Early studies have revealed the biochemical mechanism of the 

luciferin-luciferase system and characterized the properties of 

GFPs (Chiesa et al., 2001; Vysotski and Lee, 2004; Shimomura, 
2005). The unique properties of the light-generating systems of 
these proteins have gathered immense attention in a wide range 
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of multidisciplinary applications, including gene assays, macro- 
molecule interaction assays, adenosine triphosphate (ATP) deter- 
mination, biosensors, hygiene control in food industries, in vivo 
imaging in diagnosis, high-throughput screening in drug develop- 
ment, and clinical analysis of novel pandemic infectious diseases 
(Ramsaran et al., 1998; Sylvia et al., 2000; Bhaumik and Gambhir, 
2002; Cook and Griffin, 2003; Kadurugamuwa et al., 2003; Cronin 
et al., 2008; Comps-Agrar et al., 2011; Amodio and Dino, 2014; 
Lundin, 2014; Karlsson et al., 2015; Lee et al., 2015; Phillips et al., 
2016; Taminiau et al., 2016; Belkin et al., 2017; Morciano et al., 
2017; Rincon et al., 2017; Iannotti et al., 2018; Dale et al., 2019; 
Hoare et al., 2019; Endo and Ozawa, 2020; Esteban Florez et al., 
2020; Jonkers et al., 2020; Niu et al., 2020; Ong et al., 2020). 
Marine organisms are enchanting creatures that possess a wide 
variety of fluorescent and luminescent proteins which have tre- 
mendous value for a broad range of potential applications (Fig. 1). 
This review first briefly summarizes the functions of fluorescent 
and bioluminescent proteins found in marine organisms, then 
focuses on the recent status of applications of these protein 
systems, and finally proposes their future perspectives. 

Roles of fluorescent proteins in nature 

The emission of green fluorescence in the hydrozoan medusa 
Aequorea victoria depends on the chemiluminescent protein 
aequorin, which is composed of apoequorin and coelenterazine. 
Apoaequorin is a 21-kDa single polypeptide that requires Ca2+ 
and coelenterazine as prosthetic components to release blue 
light at the wavelength of 470 nm, which is then absorbed by 
GFP, resulting in the emission of a longer-wavelength green fluor- 
escent light at the wavelength of 508 nm (Shimomura et al., 1962; 
Shimomura, 1979). The light conversion is driven by a chromo- 
phore derived through autocatalytic cyclization of the tripeptide 
65-SYG-67 (Shimomura, 1979). 

Fluorescent proteins are characterized as having an energy-
dispatching function, by means of light scattering, owing to 
which organisms are capable of protecting themselves against 
photodamages, such as UVA and radiation (Salih et al., 2000). A 
previous study demonstrated that reactive oxygen species that 
occur under the condition of hyperoxia during photosynthesis in 
algal symbionts are quenched by GFP, thereby suggesting that 
it has a function of antioxidant protection in A. victoria (Bou-
Abdallah et al., 2006). The GFP gene found in cephalochordates 
has also been proposed to play a role in photoprotection against 
oxy-radicals (Bomati et al., 2009; Yue et al., 2016). The hydrozoan 

jellyfish Clytia hemisphaerica possesses four GFPs, and its strong 
green fluorescence seems to protect stem cells and mitochondrial 
DNA against UV light (Fourrage et al., 2014). 

Fluorescence is attractive to prey, and several studies have 
identified the function of fluorescent proteins in predation. The 
fluorescent tentacles of the siphonophore Resomia ornicephala 
have been shown to serve as prey attractants (Pugh and Haddock, 
2010). The GFP in the tentacles of the deep sea anemone Cribri- 
nopsis japonica absorbs blue light and emits green fluorescence, 
thereby suggesting its role in prey attraction (Tsutsui et al., 2016). 
Another group found that the fluorescent proteins in the tentacle 
tips of the hydromedusa Olindias formosus significantly attracted 
juvenile rockfish in blue light environments (Haddock and Dunn, 
2015). 

The intense red fluorescent body pattern observed in the 
diurnal fish Cirrhilabrus solorensis supports deep-sea vision, and 
the goby Eviota atriventris is sensitive to red fluorescence (Warrant 
and Locket, 2004; Michiels et al., 2008). The role of red fluores- 
cence in vision has been discovered in over 180 species of red 
fluorescence-emitting marine fish till date (Gerlach et al., 2014; 
Sparks et al., 2014; Macel et al., 2020). In addition, rays, sharks, and 
reef fish can display or recognize their own fluorescence, thereby 
implying that they have the ability to communicate by utilizing 
it (Heinermann, 1984; Gruber et al., 2016). Research on several 
copepods and bony fish has suggested other possible roles for 
fluorescence in mating and camouflage (Shagin et al., 2004; Hunt 
et al., 2010; Gruber et al., 2016). However, the role of fluorescence 
in visual recognition among marine organisms remains to be 
elucidated through further intensive research. 

Characteristics of bioluminescent proteins 

More than 500 genera dwelling in the ocean, ranging from 
bacteria to fish, are luminous organisms (Widder, 1999; Haddock 
et al., 2010; Martini and Haddock, 2017; Shimomura, 2012). Diverse 
organisms have the ability to visually detect bioluminescence in 
marine environments, where sunlight or moonlight is poor or 
unavailable (Widder, 1999, 2002). Daylight declines by nearly 10-
fold at every 5 m of depth and completely vanishes below 1,000 m 
(Widder, 2002). Bioluminescence is considered a major light source 
in areas where light is rarely available or those that are completely 
dark. In this context, bioluminescent light is critical for the survival 
of most deep-sea species, for their hunting, mating, and defense 
(Widder, 1999; Inouye et al., 2000; Meyer-Rochow, 2007; Stanger-
Hall et al., 2007; Haddock et al., 2010). 
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Since Boyle reported the importance of oxygen in bacterial 
bioluminescence (Boyle, 1667), other researchers have also investi- 
gated the mechanisms of light production (Meyer-Rochow, 2007). 
In this process, Dubois and Harvey noticed the bioluminescence 
of the click beetle Pyrophorus sp. and marine bivalve mollusc 
Pholas dactylus and discovered the luciferin-luciferase system 
(Dubois, 1885; Harvey, 1957; Poisson, 2010; Shimomura, 2012). This 
finding was then extended to Shimomura's discovery of aequorin, 
the first bioluminescent photoprotein, in the jellyfish A. victoria 
(Shimomura et al., 1962). Functional photoproteins are composed 
of apoproteins, chromophoric components, and oxygen molecules 
(Ohmiya and Hirano, 1996). The structure of photoproteins is 
similar among various species that emit bioluminescence, particu- 
larly in Ca2+-binding sites and spatial structures (Stepanyuk et al., 
2013). Interestingly, in several dinoflagellates, the light-emitting 
activity of luciferase is regulated by a luciferin-binding protein, by 
sequestering the luciferin substrate at higher pH (Liu et al., 2004). 

In a typical luciferin-luciferase system, luciferin is enzymatically 
oxidized and converted into an excited-state anionic species by 
luciferase. The excited state oxyluciferin then releases fluorescent 
blue light at wavelengths in the range of 454~493 nm, following 
which it returns to its ground state (Henry and Michelson, 1978; 
Shimomura, 2012). As a typical luciferin, the imidazopyrazine com- 
pound coelenterazine is oxidized to the excited state coelentera- 
mide oxyluciferin through a dioxetanone intermediate, resulting 
in the release of bioluminescence (Shimomura and Johnson, 1978). 
Unlike insect d-luciferin, coelenterazine is not ATP-dependent for 
activation (Ohmiya and Hirano, 1996). It was first identified in 
deep-sea shrimp and copepods (Shimomura et al., 1978; Markova 
et al., 2019), and is utilized as a substrate for luminescence 
generation by approximately 15 different luciferases, including 
the most common luciferases, the sea pansy Renilla reniformis 
luciferase (Rluc), marine copepod Gaussia princeps luciferase 
(Gluc), and another marine copepod Metridia longa luciferase 
(Mluc) (Lorenz et al., 1991; Inouye et al., 2000; Verhaegent and 
Christopoulos, 2002; Markova et al., 2004; Stepanyuk et al., 2008; 
Takenaka et al., 2008; Titushin et al., 2008; Takenaka et al., 2012). 
These luciferases are smaller (~34 kDa Rluc and ~20 kDa Gluc 
and Mluc) than the luciferase found in terrestrial insects, Fluc 
(~62 kDa), which makes them appropriate for various applications 
(Syed and Anderson, 2021). 

It is common to observe a similar protein structure for lucif- 
erases among marine species. For instance, bioluminescent marine 
dinoflagellates exhibit highly conserved central domains in their 
luciferases (Liu et al., 2004). Interestingly, the luciferin in the marine 

ostracod Vargula hilgendorfii showed a cross-reaction with lumi- 
nescent fish luciferases, thereby giving rise to questions about its 
evolutionary origin (Thompson et al., 1989). Similar cross-reactivity 
has also been observed between Euphausiid krill and dinofla- 
gellates (Nakamura et al., 1988). The discovery of more unknown 
luciferin-luciferase systems is an active field of research, which will 
broaden our knowledge of their ecological importance in marine 
environments and future applications. 

Collaborations between fluorescent and 
bioluminescent proteins 

Fluorescence and bioluminescence can exist simultaneously 
and also interact with the same organism or similar habitats. In 
this case, bioluminescence acts as a source of light energy for 
fluorescence generation. For example, when aequorin releases blue 
luminescent light, this energy is then absorbed by GFP, resulting 
in the emission of a longer-wavelength green fluorescent light 
(Shimomura et al., 1962; Shimomura, 1979). Aequorin, therefore, 
is regarded as a blue fluorescent protein. In Renilla, the blue light 
released from luciferase Rluc is transferred to the fluorophore of a 
nearby GFP, resulting in the emission of green fluorescent light at 
the wavelength of 510 nm (Wang et al., 1998). The siphonophore 
Erenna sirena converts luminescence generated from its lumi- 
nescent photophore to fluorescence using tentacles and releases 
yellow to red light in the wavelength range of 583~680 nm 
(Haddock et al., 2005). Cnidarians are capable of collecting light 
energy by fluorescence from the blue luminescence produced 
in deep-sea habitats (Matz et al., 2006). Interestingly, in several 
dinoflagellates, luminescent organs are bifunctional. For example, 
luminescent photophores in the dinoflagellate alga Gonyaulax are 
considered autofluorescent organs that convert blue luminescence 
into green light using GFP (Johnson et al., 1985). Considering the 
light-limited world of the deep sea, it is not surprising to observe 
interactions between fluorescence and bioluminescence. Conse- 
quently, it would not be unreasonable to anticipate that there 
could be further undiscovered events, because the lives in the 
marine ecosystem are connected to each other for multiple pur- 
poses. 

Applications 

In basic research, fluorescent and bioluminescent proteins are 
utilized as reporters to trace the expression of specific genes of 
interest. The recombinant GFP-tagging strategy has been widely 
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adopted for targeting proteins and is now a common tool in 
molecular biology, cell biology, and biomedicine (Shimomura et 
al., 1962; Mocz, 2007; Scott et al., 2011). Bioluminescence properties 
have been widely accepted in the field of applications (Table 1). 
Early studies adopted bioluminescence resonance energy transfer 
(BRET) assays for protein-protein interaction studies (Pfleger and 
Eidne, 2006; England et al., 2016; Dale et al., 2019). In this system, 
fluorescent and bioluminescent proteins function in a co-operative 
sequential reaction. An excited-state aequorin or coelenterazine 
serves as a donor of non-radiative energy and transfers the 
energy to a proximate acceptor, GFP, followed by the emission of 
fluorescent light. The proximal distance between the energy donor 
and acceptor molecules determines the fraction of the energy 
transfer. This system has been used to study the target proteins of 
G protein-linked receptors and p53 involved in the oncological 
progress (Dudgeon et al., 2010; Comps-Agrar et al., 2011). More- 
over, the recently developed NanoBRET system has been used 
to identify in vivo protein-ligand interactions using red light-
emitting acceptors (Hoare et al., 2019). The split luciferase assay is 
another major technology that has been used to study protein-

protein interactions (Wehr and Rossner, 2016). This system is 
based on diverse luciferases that are divided into two functional 
fragments, N-terminal and C-terminal domains, each of which is 
designed to build a fusion protein of interest. The presence of a 
ligand recruits the two separate proteins into close proximity, 
subsequently leading to the reassembly of the two luciferase 
domains and restoration of the functional protein. A previous study 
applied Gluc to this assay system, and conducted pharmaceutical 
validation by visualizing the interaction dynamics (Remy and 
Michnick, 2006). Luciferase assays have also been used to detect 
various coronavirus infections in diverse cells (Zhao et al., 2013; 
Yang et al., 2014). In a study on SARS-Cov-2, genes of both 
Fluc and the viral spike glycoprotein were introduced into host 
cells, and the resulting recombinant viral particles containing the 
bioluminescent reporter Fluc were then used to identify the 
cellular receptor angiotensin-converting enzyme 2 (Lan et al., 2020; 
Shang et al., 2020). In other studies, aequorin has been used as 
a labeling molecule for tumor necrosis factor-alpha, Forssman 
antigen, cytokine, and protein A (Erikaku et al., 1991; Stults et al., 
1992; Xiao et al., 1996; Zatta, 1996). It has also been shown that 

Table 1. Examples of experimental and industrial applications of bioluminescent proteins presented on this review 

Applied protein Application Examples of study 

GFP with aequorin of 
coelenterazine 
 
 
 

BRET 
NanoBRET 
 
 
 

Detecting interactions between the target proteins of G protein-linked 
receptors and p53 involved in the oncological progress (Dudgeon et al., 
2010; Comps-Agrar et al., 2011). 
 
In vivo protein-ligand interactions (Hoare et al., 2019). 

Gluc 
Fluc 
 
 

Split luciferase assay 
 
 
 

Pharmaceutical validation by visualizing the interaction dynamics 
(Remy and Michnick, 2006). 
 
Detection of SARS-Cov-2 infection (Lan et al., 2020; Shang et al., 2020). 

Fluc with D-luciferin 
Rluc 
 
 
 

In vivo monitoring 
 
 
 
 

Identifying the entry sites of encephalitis viruses into the mouse central 
nervous system (Phillips et al., 2016). 
 
Characterizing the HCoV-OC43 strain in the central nervous system 
(Niu et al., 2020). 

GFP and other 
bioluminescent proteins 
 

Bioreporters 
 
 

Detecting various compounds including toluene, genotoxic chemicals, 
and heavy metals (Applegate et al., 1998; Lee et al., 2007; Charrier et al., 
2011; Wang et al., 2013). 

Rluc 
 

High-throughput 
screening system 

Quantifying viral replication of HCoV-OC43 (Shen et al., 2019). 
 

Various proteins 
 
 

Detection of ATP 
concentration 
 

Monitoring hygiene control in the healthcare and food industries 
(Dostálek and Brányik, 2005; Amodio and Dino, 2014; Baba et al., 2018; 
Rodriguez and Hooper, 2019). 
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a limited amount of prostate-specific antigen can be detected 
by means of an expression immunoassay using aequorin (White 
and Christopoulos, 1999; Dragulescu-Andrasi et al., 2009; Byun 
et al., 2019). Several other studies have reported the function of 
bioluminescence as sensors, for detection of acidosis, reactive 
oxygen species, nitric oxide, and Ca2+ signaling (Takakura et al., 
2015; Pelentir et al., 2019; Ong et al., 2020). 

Bioluminescence offers versatile applications for imaging tumor 
progression (Choy et al., 2003), and has been used in several 
cancer studies conducted on the breast, colon, and prostate using 
animal models (Caceres et al., 2003; Scatena et al., 2004; Zeamari 
et al., 2004). In vivo monitoring is a prominent advantage that 
bioluminescence offers in laboratory experiments. Light from living 
cells circumvents the problem of biopsy, which requires that the 
experimental animals be sacrificed in order to observe the effect 
of a certain gene expression (Syed and Anderson, 2021). For in- 
stance, Fluc and D-luciferine have been used to identify the entry 
sites of encephalitis viruses into the mouse central nervous system 
(Phillips et al., 2016). In another study, Rluc and coelenterazine 
were used in live mice, to characterize the HCoV-OC43 strain in 
the central nervous system (Niu et al., 2020). In the industrial 
sector, bioluminescence has been utilized in a broad spectrum of 
applications, with distinct advantages (Syed and Anderson, 2021). 
The effects of antibiotics have been evaluated over time using 
animal models. A study genetically engineered target bacteria 
with the lux operon prior to injection, thus allowing for monitoring 
of the effect of an antibiotic in vivo in the injected mice (Berger 
et al., 2017). This advantage can also be applied in photodynamic 
therapy. In a previous report, bioluminescent bacteria were loaded 
on the dermal abrasion site of mice treated with photosensitizers, 
following which the photodynamic therapy efficacy was visually 
evaluated under red light (Vecchio et al., 2013). There is another 
interesting possibility for the application of bioluminescent protein 
as bioreporters. Bioluminescent bioreporters have been shown to 
effectively detect various compounds including toluene, genotoxic 
chemicals, and heavy metals (Applegate et al., 1998; Lee et al., 
2007; Charrier et al., 2011; Wang et al., 2013). In another study, a 
recombinant bacterial strain functioning as a trinitrotoluene sensor 
was constructed by placing a trinitrotoluene-inducible promoter 
in front of the GFP gene. Sensing for this system was performed 
using a laser-based optoelectronic system and scanner (Belkin et al., 
2017). In the same context, a similar construction of a recombinant 
strain could be developed for the detection of terrorist com- 
pounds. Bioluminescence could be a useful tool in the pharma- 
ceutical industry, because novel drug discovery demands high-

throughput screening systems. In a recent report, Rluc was in- 
serted into the ns2 accessory gene of the coronavirus strain 
HCoV-OC43, following which the recombinant strain was trans- 
fected into BHK-21 cells. The luminescent light emitted from this 
system upon addition of coelenterazine was then measured to 
quantify viral replication. Interestingly, this measurement was 
significantly reduced by a new antiviral drug being tested, thus 
demonstrating its efficacy. The group successfully tested 2,000-
compound libraries using this robust screening system (Shen et 
al., 2019). In addition, the bioluminescence of insects is suitable 
for discriminating not only live and dead cells, but also healthy 
and diseased cells, by utilizing their sensitive detection mechanism 
of ATP concentration (Zhang et al., 2010; Bird et al., 2014; Lee et 
al., 2015; Palikaras and Tavernarakis, 2016). This unique feature of 
the ATP bioluminescence system has been applied to monitor 
hygiene control in the healthcare and food industries (Dostálek 
and Brányik, 2005; Amodio and Dino, 2014; Baba et al., 2018; 
Rodriguez and Hooper, 2019). The respiratory chain of biolumi- 
nescent bacteria is directly connected to bioluminescence output, 
and thus, their luminescence system is utilized as a monitoring 
sensor in ecotoxicology (Fukuba et al., 2011; Hassan et al., 2016; 
Hansen et al., 2019). 

Conclusions and Future perspectives 

Even though this review discusses many examples of the appli- 
cations of marine fluorescence and bioluminescence, a wide 
spectrum of developments using these stunning lighting mach- 
ineries are still possible in the future, with active basic studies on 
these proteins being published regularly. Fluorescent and bio- 
luminescent proteins possess fascinating properties, which can be 
functionally enhanced using genetic engineering. For example, 
mutant luciferases of Rluc have been developed to achieve brighter 
and more stable enzymes, which have demonstrated enhanced 
BRET efficiency in in vitro/in vivo imaging and Ca2+ ion-detection 
ability (Loening et al., 2006; Takai et al., 2015; Suzuki et al., 2016). 
Moreover, the luciferase from the deep sea caridean shrimp 
Oplophorus gracilirostris (Oluc) has been engineered by means 
of mutagenesis to reveal improved light emission and thermal 
stability (Hall et al., 2012). With the continuous development of 
functionally enhanced enzymes and substrates, the application area 
of these proteins could be expanded. Concurrently, the discovery 
of new luciferin-luciferase and photoprotein systems could result 
in further enhanced output, by building various combinations of 
the substrate and enzyme, or fluorescence and luminescence. In 
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addition, Antarctic marine environments have diverse ecosystems, 
which preserve and offer tremendous potential resources for the 
development of future biotechnology. Consequently, it is not 
difficult to anticipate the discovery of novel fluorescent and bio- 
luminescent proteins in Antarctic marine species from either shal- 
low or deep water, which would contribute to a comprehensive 
understanding of the entire marine ecosystem as well as the 
development of beneficial applications for humans. 
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