Browse > Article
http://dx.doi.org/10.5857/RCP.2016.5.2.18

Quantum Chemistry Based Arguments about Singlet Oxygen Formation Trends from Fluorescent Proteins  

Park, Jae Woo (Department of Chemistry, Pohang University of Science and Technology (POSTECH))
Rhee, Young Min (Department of Chemistry, Pohang University of Science and Technology (POSTECH))
Publication Information
Rapid Communication in Photoscience / v.5, no.2, 2016 , pp. 18-20 More about this Journal
Abstract
Through quantum chemical means, we inspect the energetics of the singlet oxygen formation with fluorescent proteins in their triplet excited states. By placing an oxygen molecule at varying distances, we discover that the energetic driving force for the singlet oxygen formation does not depend strongly on the chromophore $-O_2$ distance. We also observe that the chromophore vibrations contribute much to the energy gap modulation toward the surface crossing. Based on our computational results, we try to draw a series of rationalizations of different photostabilities of different fluorescent proteins. Most prominently, we argue that the chance of encountering a surface crossing point is higher with a protein with a lower photostability.
Keywords
fluorescent protein; quantum chemistry; molecular dynamics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shaner, N. C.; Steinbach, P. A.; Tsien, R. Y. Nat. Meth. 2005, 2, 905.   DOI
2 Day, R. N.; Davidson, M. W. Chem. Soc. Rev. 2009, 38, 2887.   DOI
3 Chapagain, P. P.; Regmi, C. K.; Castillo, W. J. Chem. Phys. 2011, 135, 235101.   DOI
4 Mena, M. A.; Treynor, T. P.; Mayo, S. L.; Daugherty, P. S. Nat. Biotechnol. 2006, 24, 1569.   DOI
5 Ai, H.-W.; Shaner, N. C.; Cheng, Z.; Tsien, R. Y.; Campbell, R. E. Biochemistry 2007, 46, 5904.   DOI
6 Ai, H.-W.; Henderson, J. N.; Remington, S. J.; Campbell, R. E. Biochem. J. 2006, 400, 531.   DOI
7 Remington, S. J. Curr. Opin. Struct. Biol. 2006, 16, 714.   DOI
8 Pakhomov, A. A.; Martynov, V. I. Chem. Biol. 2008, 15, 755.   DOI
9 Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.   DOI
10 Stalring, J.; Bernhardsson, A.; Lindh, R. Mol. Phys. 2001, 99, 103.   DOI
11 Andersen, H. C. J. Comput. Phys. 1983, 52, 24.   DOI
12 Finley, J.; Malmqvist, P.-A.; Roos, B. O.; Serrano-Andres, L. Chem. Phys. Lett. 1998, 288, 299.   DOI
13 Greenbaum, L.; Rothmann, C.; Lavie, R.; Malik, Z. Biol. Chem. 2000, 381, 1251.
14 Shaner, N. C.; Patterson, G. H.; Davidson, M. W. J. Cell Sci. 2007, 120, 4247.   DOI
15 Shao, Y.; et al. Phys. Chem. Chem. Phys. 2006, 8, 3172.   DOI
16 MOLPRO, version 2009.1, a package of ab initio programs, Werner, H.-J.; et al. (http://www.molpro.net).
17 Campbell, R. E.; Tour, O.; Palmer, A. E.; Steinbach, P. A.; Baird, G. S.; Zacharias, D. A.; Tsien, R. Y. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 7877.   DOI
18 Rhee, Y. M.; Park, J. W. Int. J. Quantum Chem. 2016, 116, 573.   DOI
19 van Thor, J. J. Chem. Soc. Rev. 2009, 38, 2935.   DOI
20 Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509.   DOI
21 Meech, S. R. Chem. Soc. Rev. 2009, 38, 2922.   DOI
22 Diaspro, A.; Chirico, G.; Usai, C.; Ramoino, P.; Dobrucki, J., Photobleaching. In Handbook of Biological Confocal Microscopy, Springer: 2006.