• Title/Summary/Keyword: flapwise vibration

Search Result 28, Processing Time 0.027 seconds

Flapwise Bending Vibration of Rotating Timoshenko Beams with Concentrated Mass Moment of Inertia (집중 질량 및 관성모멘트를 갖는 회전하는 티모센코 보의 면외굽힘 진동)

  • 박정훈;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.110-115
    • /
    • 1997
  • A modeling method for the bending vibration analysis of rotating Timoshenko beams with concentrated mass and mass moment of inertia is presented. The shear and rotary inertia effects become critical for the accurate estimation of the natural frequencies and modeshapes as the slenderness ratio decreases. The effect of the concentrated mass and mass moment of inertia on the natural frequencies are also investigated with the modeling method.

  • PDF

Vibration-based identification of rotating blades using Rodrigues' rotation formula from a 3-D measurement

  • Loh, Chin-Hsiung;Huang, Yu-Ting;Hsiung, Wan-Ying;Yang, Yuan-Sen;Loh, Kenneth J.
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.677-691
    • /
    • 2015
  • In this study, the geometrical setup of a turbine blade is tracked. A research-scale rotating turbine blade system is setup with a single 3-axes accelerometer mounted on one of the blades. The turbine system is rotated by a controlled motor. The tilt and rolling angles of the rotating blade under operating conditions are determined from the response measurement of the single accelerometer. Data acquisition is achieved using a prototype wireless sensing system. First, the Rodrigues' rotation formula and an optimization algorithm are used to track the blade rolling angle and pitching angles of the turbine blade system. In addition, the blade flapwise natural frequency is identified by removing the rotation-related response induced by gravity and centrifuge force. To verify the result of calculations, a covariance-driven stochastic subspace identification method (SSI-COV) is applied to the vibration measurements of the blades to determine the system natural frequencies. It is thus proven that by using a single sensor and through a series of coordinate transformations and the Rodrigues' rotation formula, the geometrical setup of the blade can be tracked and the blade flapwise vibration frequency can be determined successfully.

Fluid-Oscillation Coupled Analysis for HAWT Rotor Blade (One Degree of Freedom Weak Coupling Analysis with Hinge-Spring Model)

  • Imamura, Hiroshi;Hasegawa, Yutaka;Murata, Junsuke;Chihara, Sho;Takezaki, Daisuke;Kamiya, Naotsugu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.197-205
    • /
    • 2009
  • Since large-scale commercial wind turbine generator systems such as MW-class wind turbines are becoming widely operated, the vibration and distortion of the blade are becoming larger and larger. Therefore the soft structure design instead of the solid-design is one of the important concepts to reduce the structural load and the cost of the wind turbine rotors. The objectives of the study are development of the fluid-structure coupled analysis code and evaluation of soft rotor-blade design to reduce the unsteady structural blade load. In this paper, fluid-structure coupled analysis for the HAWT rotor blade is performed by free wake panel method coupled with hinge-spring blade model for the flapwise blade motion. In the model, the continuous deflection of the rotor blade is represented by flapping angle of the hinge with one degree of freedom. The calculation results are evaluated by comparison with the database of the NREL unsteady aerodynamic experiment. In the analysis the unsteady flapwise moments in yawed inflow conditions are compared for the blades with different flapwise eigen frequencies.

Thermally Induced Vibration Control of Flexible Spacecraft Appendages Using by Piezoelectric Material (압전재료를 이용한 위성체 구조물의 열 진동 제어)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.303-310
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that an bonded or embedded into the host structure.

  • PDF

Vibration Analysis of Rotating Blades with the Cross Section Taper Considering the Pre-twist Angle and the Setting Angle (초기 비틀림각 및 장착 각의 영향을 고려한 단면 테이퍼진 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.10-21
    • /
    • 2010
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and setting angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena are also investigated and discussed in this work.

Vibration analysis of rotating blades considering the cross section taper, the pre-twist angle, and the setting angle (단면 테이퍼, 초기 비틀림각, 그리고 장착 각의 영향을 고려한 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.288-295
    • /
    • 2009
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and orientation angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena is also investigated and discussed in this work.

  • PDF

Bending Vibration of a Pretwisted Rotating Cantilever Beam (초기 비틀림각을 갖는 회전 외팔보의 굽힘 진동)

  • Park, Jung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2174-2181
    • /
    • 1996
  • Equations of chordwise and flapwise bending motions of pretwisted rotatin cantilever beams are derived. The two motions are coupled to each other due to the pretwist angle of the beam cross section. As the angular speed, hub radius ratio, and pretwist angle vary, the vibration characteristics of the beam change. It is found that engenvalue loci veering phenomena and associated mode shape variations occur between two vibration modes due to the pretwist angle. The effect of the pretwist angle on the critical angular speed is also investigated.

비균열 외팔 보형 회전날개의 진동특성에 관한 연구

  • 정인성;채회창;박태원;이기형;이환성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.96-100
    • /
    • 2001
  • A method is presented for determining the free vibration characteristics of a rotating blade having nonuniform span wise properies and cantilevers boundary condition. The equations which govern the coupled the coupled flapwise, choirwise, and torsional motion of such a blade are solved using an integrating matrix method. By expressing the equation of motion in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary condition, the equations are formulated into an eigenvalues problem whose solution may be determined by conventional method. Computer results are compared with experimental data.

Vibration analysis of a pretwisted rotating blade with a concentrated mass (집중질량과 초기 비틀림각을 갖는 회전블레이드의 진동해석)

  • Kwak, Joo-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.190-197
    • /
    • 1998
  • Equations of motions of a pretwisted rotating blade with a concentrated mass in an arbitrary position are derived. The flapwise and chordwise equations are coupled to each other due to the pretwist angle of the blade. As the angular speed, hub radius ratio, pretwist angle and concentrated mass vary, the vibration characteristics of the blade change. It is found that eigenvalue lociveering phenomena occur between two closing loci due to the pretwist angle. The effect of the pretwist angle on the critical angular speed and location of the concentrated mass on the natural frequencies are also investigated.

Vibration and Stability of Composite Thin-Walled Spinning Shaft (복합재료 회전축의 진동 특성 및 안정성 해석)

  • Yoon, Hyung-Won;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1083-1088
    • /
    • 2004
  • This paper deals with the vibration and stability of a circular cylindrical shaft, modeled as a tapered thin-walled composite beam and spinning with constant angular speed about its longitudinal axis, and subjected to an axial compressive force. Hamilton's principle and the assumed mode method are employed to derive the governing equations of motion. The resulting eigenvalue problem is analyzed, and the stability boundaries are presented for selected taper ratios and axial compressive force combinations. Taking into account the directionality property of fiber reinforced composite materials, it is shown that for a shaft featuring flapwise-chordwise-bending coupling, a dramatic enhancement of both the vibration and stability behavior can be reached. It is found that by the structural tailoring and tapering, bending natural frequencies, stiffness and stability region can be significantly increased over those of uniform shafts made of the same material. In addition, the particular case of a classical beam with internal damping effect is also included.

  • PDF