• Title/Summary/Keyword: fixed point problem

Search Result 353, Processing Time 0.033 seconds

A NEW RELAXED TSENG METHOD FOR FINDING A COMMON SOLUTION OF FIXED POINT AND SPLIT MONOTONE INCLUSION PROBLEMS

  • Lusanda Mzimela;Akindele Adebayo Mebawondu;Adhir Maharaj;Chinedu Izuchukwu;Ojen Kumar Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.225-258
    • /
    • 2024
  • In this paper, we study the problem of finding a common solution to a fixed point problem involving a finite family of ρ-demimetric operators and a split monotone inclusion problem with monotone and Lipschitz continuous operator in real Hilbert spaces. Motivated by the inertial technique and the Tseng method, a new and efficient iterative method for solving the aforementioned problem is introduced and studied. Also, we establish a strong convergence result of the proposed method under standard and mild conditions.

INVESTIGATION OF A NEW COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS IN FRAME OF HILFER-HADAMARD

  • Ali Abd Alaziz Najem Al-Sudani;Ibrahem Abdulrasool hammood Al-Nuh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.501-515
    • /
    • 2024
  • The primary focus of this paper is to thoroughly examine and analyze a coupled system by a Hilfer-Hadamard-type fractional differential equation with coupled boundary conditions. To achieve this, we introduce an operator that possesses fixed points corresponding to the solutions of the problem, effectively transforming the given system into an equivalent fixed-point problem. The necessary conditions for the existence and uniqueness of solutions for the system are established using Banach's fixed point theorem and Schaefer's fixed point theorem. An illustrate example is presented to demonstrate the effectiveness of the developed controllability results.

PARALLEL SHRINKING PROJECTION METHOD FOR FIXED POINT AND GENERALIZED EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLD

  • Hammed Anuoluwapo Abass;Olawale Kazeem Oyewole
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.421-436
    • /
    • 2024
  • In this article, we propose a shrinking projection algorithm for solving a finite family of generalized equilibrium problem which is also a fixed point of a nonexpansive mapping in the setting of Hadamard manifolds. Under some mild conditions, we prove that the sequence generated by the proposed algorithm converges to a common solution of a finite family of generalized equilibrium problem and fixed point problem of a nonexpansive mapping. Lastly, we present some numerical examples to illustrate the performance of our iterative method. Our results extends and improve many related results on generalized equilibrium problem from linear spaces to Hadamard manifolds. The result discuss in this article extends and complements many related results in the literature.

Positive Solutions for Three-point Boundary Value Problem of Nonlinear Fractional q-difference Equation

  • Yang, Wengui
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.419-430
    • /
    • 2016
  • In this paper, we investigate the existence and uniqueness of positive solutions for three-point boundary value problem of nonlinear fractional q-difference equation. Some existence and uniqueness results are obtained by applying some standard fixed point theorems. As applications, two examples are presented to illustrate the main results.

MULTIPLE POSITIVE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEM WITH FINITE FRACTIONAL DIFFERENCE

  • He, Yansheng;Hou, Chengmin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.173-186
    • /
    • 2015
  • In this paper, we consider a discrete fractional nonlinear boundary value problem in which nonlinear term f is involved with the fractional order difference. We transform the fractional boundary value problem into boundary value problem of integer order difference equation. By using a generalization of Leggett-Williams fixed-point theorem due to Avery and Peterson, we provide sufficient conditions for the existence of at least three positive solutions.

Design of the PID Controller Using Finite Alphabet Optimization (유한 알파벳 PID제어기 설계)

  • Yang, Yun-Hyuck;Kwon, Oh-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.647-649
    • /
    • 2004
  • When a controller is implemented by a one-chip processor with fixed-point operations, the finite alphabet problem usually occurs since parameters and signals should be taken in a finite set of values. This paper formulates PID finite alphabet PID control problem which combines the PID controller with the finite alphabet problem. We will propose a PID parameter tuning method based on an optimization algorithm under the finite alphabet condition. The PID parameters can be represented by a fixed-point representation, and then the problem is formulated as an optimization with constraints that parameters are taken in the finite set. Some simulation are to be performed to exemplify the performance of the PID parameter tuning method proposed in this paper.

  • PDF

On Strongly Nonlinear Implicit Complementarity Problems in Hilbert Spaces

  • Cho, Yeol Je;Huang, Nan-Jing
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.145-152
    • /
    • 2006
  • In this paper, we study a class of strongly nonlinear implicit complementarity problems in the setting of Hilbert spaces H (not necessarily Hilbert lattices). By using the property of the projection and a suitable change of variables, we establish the equivalence between the strongly nonlinear implicit complementarity problem and the fixed point problem in H. Moreover, we use this equivalence and the fixed point theorem of Boyd and Wong to prove the existence and uniqueness of solutions for the strongly nonlinear implicit complementarity problem in H.

  • PDF

ITERATIVE METHOD FOR SOLVING FINITE FAMILIES OF VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS OF CERTAIN MULTI-VALUED MAPPINGS

  • Olona, Musa Adewale;Narain, Ojen Kumar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.149-167
    • /
    • 2022
  • In this paper, we propose a viscosity iterative algorithm for approximating a common solution of finite family of variational inequality problem and fixed point problem for finite family of multi-valued type-one demicontractive mappings in real Hilbert spaces. A strong convergence result of the aforementioned problems were proved and some consequences of our result was also displayed. In addition, we discuss an application of our main result to convex minimization problem. The result presented in this article complements and extends many recent results in literature.

EXISTENCE OF NONNEGATIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEMS

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.495-505
    • /
    • 2009
  • By means of Green function and fixed point theorem related with cone theoretic method we show that there exist multiple nonnegative solutions of a Dirichlet problem $$\array{-[p(t)x^{\prime}(t)]^{\prime}={\lambda}q(t)f(x(t)),\;t{\in}I=[0,\;T]\\x(0)=0=x(T)}$$, and a mixed problem $$\array{-[p(t)x^{\prime}(t)]^{\prime}={\mu}q(t)f(x(t)),\;t{\in}I=[0,\;T]\\x^{\prime}(0)=0=x(T)}$$, where ${\lambda}$ and ${\mu}$ are positive parameters.

  • PDF