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Abstract. In this paper, we study a class of strongly nonlinear implicit complementarity
problems in the setting of Hilbert spaces H (not necessarily Hilbert lattices). By using
the property of the projection and a suitable change of variables, we establish the equiva-
lence between the strongly nonlinear implicit complementarity problem and the fixed point
problem in H.

Moreover, we use this equivalence and the fixed point theorem of Boyd and Wong to

prove the existence and uniqueness of solutions for the strongly nonlinear implicit comple-

mentarity problem in H.

1. Introduction

Complementarity problem theory, introduced and studied by Lemke [12] and
Cottle and Dantzig [7] in the 1960s and later developed by others, plays an im-
portant and fundamental role in the study of a wide class of problems arising in
mechanics, physics, nonlinear programming, optimization and control, economics
and transportation equilibrium, contact problems in elasticity, fluid flow through
porous media, and many other branches of mathematical and engineering sciences
(see [1], [5], [6], [8]-[11], [13]-[16] and the references therein).

In 1988, Noor [14] used the technique of change of variables to study some classes
of complementarity problems in finite-dimensional space Rn. Recently, Ahmad,
Kazmi and Rehman [1] were first to use the concept of change of variables to study
a class of implicit complementarity problems in the setting of Hilbert lattices.

Motivated and inspired by recent research work in this field, in this paper,
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we study a class of strongly nonlinear implicit complementarity problems in the
setting of Hilbert spaces H (not necessarily Hilbert lattices). In Section 2, by using
the property of the projection and a suitable change of variables, we establish the
equivalence between the strongly nonlinear implicit complementarity problem and
the fixed point problem in H. In Section 3, we use this equivalence and the fixed
point theorem of Boyd and Wong to prove the existence and uniqueness of solutions
for the strongly nonlinear implicit complementarity problem in H.

2. Preliminaries

Let H be a real Hilbert space endowed with the norm ‖ · ‖ and inner product
(·, ·), respectively. If K is a closed convex cone in H, we denote by K∗ the polar
cone of K, i.e.,

K∗ = {u ∈ H : (u, v) ≥ 0 for all v ∈ K}.
Given nonlinear mappings f, h, g : D → H and N : H × H → H, where D is a
nonempty subset of H, we consider the following problems:

The strongly nonlinear explicit complementarity problem (in short, SNECP)
consists in finding z ∈ H such that

(1) z ∈ K, N(f(z), h(z)) ∈ K∗, (z, N(f(z), h(z)) = 0.

The strongly nonlinear implicit complementarity problem (in short, SNICP)
consists in finding z ∈ H such that

(2) z ∈ D, g(z) ∈ K, N(f(z), h(z)) ∈ K∗, (g(z), N(f(z), h(z)) = 0.

If N(s, t) = s + t for all s, t ∈ H and h = 0 in (1), then the problem (1) is
reduced to the problem finding z ∈ H such that

(3) z ∈ K, f(z) ∈ K∗, (z, f(z)) = 0,

and the problem (2) is reduced to the problem finding

(4) z ∈ D, g(z) ∈ K, f(z) ∈ K∗, (g(z), f(z)) = 0,

respectively.
The problem (4) is called the implicit complementarity problem considered by

Ahmad, Kazmi and Rehman [1] by using the concept of change of variables and the
fixed point technique in the setting of Hilbert lattices.

When it is necessary to point out some data of the problems mentioned above,
we will write the SNECP(f, h, N, K) and the SNICP(f, h, g, N, K) instead of the
SNECP and the SNICP, respectively.

It is well known that the implicit complementarity problem arises in stochastic
impulse optimal control problems and it was first considered by Bensoussan and
Lions [2] and studied by Capuzzo Dolcetta and Mosco [4], and Isac [11].
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The following results are important for our results.

Lemma 2.1 ([17]). If K is a closed convex cone of H and PK denotes the pro-
jection of H onto K, then, for each x ∈ H, PK(x) is characterized by the following
properties:

(i) (PK(x)− x, y) ≥ 0 for all y ∈ K,

(ii) (PK(x)− x, PK(x)) = 0.

Lemma 2.2 ([5], [8]). The mapping PK is nonexpansive, i.e.,

‖PKu− PKv‖ ≤ ‖u− v‖

for all u, v ∈ H.

Let H be a real Hilbert space (not necessarily a Hilbert lattice) and D be a
nonempty subset of H. Let f, h, g : D → H and N : H ×H → H be the nonlinear
mappings such that K ⊂ g(D). Consider two mappings T, S : K → H defined by
T (u) = f(z) and S(u) = h(z), respectively, where u ∈ K and z is an arbitrary
element of

g−1(u) = {z ∈ D : g(z) = u}.
From the assumption K ⊂ g(D), we know that T and S are both well de-
fined. It is easy to see that the SNICP(f, h, g, N, K) is now equivalent to the
SNECP(T, S,N,K) or to the following:

Find u ∈ H such that

u ∈ K, v = N(Tu, Su) ∈ K∗, (u, v) = 0.

From Lemma 2.1, we now consider the following change of variables. For all
x ∈ H, set

(5) u = PK(x), v =
1
ρ
(PK(x)− x),

where ρ > 0 is a constant. It follows from (5) and Lemma 2.1 that u ∈ K, v ∈ K∗

and (u, v) = 0. Therefore, we have the following:

Lemma 2.3. Let H be a real Hilbert space (not necessarily a Hilbert lattice) and
D be a nonempty subset of H. Let f, h, g : D → H and N : H × H → H be the
nonlinear mappings such that K ⊂ g(D). Consider two mappngs T, S : K → H
defined by T (u) = f(z) and S(u) = h(z), respectively, where u ∈ K and z is an
arbitrary element of

g−1(u) = {z ∈ D : g(z) = u}.
Then the SNICP(f, h, g,N, K) is equivalent to the fixed point problem

(6) x = F (x),
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where

(7) F (x) = PK(x)− ρN(T (PK(x)), S(PK(x)))

and ρ > 0 is a constant.

3. The existence and uniqueness theorems

We first give some definitions for our results.

Definition 3.1. Let H be a real Hilbert space and D be a nonempty subset of H.
Let f, h, g : D → H; N : H×H → H and φ, ψ, ϕ : [0,∞) → [0,∞) be the nonlinear
mappings. We say that:

(i) The mapping x 7→ N(f(x), h(y)) is a φ-Lipschitz continuous with respect to
g if

‖N(f(x1), h(y))−N(f(x2), h(y))‖
≤ ‖g(x1)− g(x2)‖φ(‖g(x1)− g(x2)‖)

for all x1, x2, y ∈ D,

(ii) The mapping y 7→ N(f(x), h(y)) is a ϕ-Lipschitz continuous with respect to
g if

‖N(f(x), h(y1))−N(f(x), h(y2))‖
≤ ‖g(y1)− g(y2)‖ϕ(‖g(y1)− g(y2)‖)

for all y1, y2, x ∈ D,

(iii) The mapping x 7→ N(f(x), h(y)) is a ψ-strongly monotone with respect to g
if

(N(f(x1), h(y))−N(f(x2), h(y)), g(x1)− g(x2))
≥ ‖g(x1)− g(x2)‖2ψ(‖g(x1)− g(x2)‖)

for all x1, x2, y ∈ D.

Definition 3.2. A metric space (X, d) is said to be metrically convex if, for any
x, y ∈ X (x 6= y), there exists z (z 6= x, y) such that

d(x, y) = d(x, z) + d(z, y).

We will use the set
Q = {d(x, y) : x, y ∈ X}.

The following result is important for proving an existence theorem:

Lemma 3.1 ([3]). Let (X, d) be a complete metrically convex metric space and
assume that, for any mapping A : X → X, there exists a mapping Φ : Q → [0,∞)
such that
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(i) d(Ax,Ay) ≤ Φ(d(x, y)) for all x, y ∈ X,

(ii) Φ(t) < t for all t ∈ Q \ {0}.
Then A has a unique fixed point x∗ in X and Anx0 → x∗ for any x0 ∈ X, where Q
denotes the closure of Q and {Anx0} is the sequence of successive approximations.

Now, we give our main theorem:

Theorem 3.1. Let H be a real Hilbert space (not necessarily a Hilbert lattice) and
D be a nonempty subset of H. Let f, h, g : D → H and N : H × H → H be the
nonlinear mappings such that K ⊂ g(D) and

(i) The mapping x 7→ N(f(x), h(y)) is φ-Lipschitz continuous with respect to g,

(ii) The mapping y 7→ N(f(x), h(y)) is ϕ-Lipschitz continuous with respect to g,

(iii) The mapping x 7→ N(f(x), h(y)) is ψ-strongly monotone with respect to g,

(iv) φ and ϕ are two increasing mappings and ψ is a decreasing mapping.

If there exists a real number ρ > 0 such that

(8)

{
ρ(φ2(t)− ϕ2(t)) < 2(ψ(t)− ϕ(t)),
ϕ(t) < ψ(t) ≤ φ(t), ρϕ(t) < 1

for all t ∈ [0,∞), then the SNICP(f, h, g,N,K) has a solution. In addition, if g is
a one-to-one mapping, then the solution is unique.

Proof. By the definitions of T and S and the conditions (i)∼(iii), we know that

(a) The mapping u 7→ N(T (u), S(v)) is φ-Lipschitz continuous, i.e.,

‖N(T (u1), S(v))−N(T (u2), S(v))‖
≤ ‖u1 − u2‖φ(‖u1 − u2‖)

for all u1, u2, v ∈ K,

(b) The mapping v 7→ N(T (u), S(v)) is ϕ-Lipschitz continuous, i.e.,

‖N(T (u), S(v1))−N(T (u), S(v2))‖
≤ ‖v1 − v2‖ϕ(‖v1 − v2‖)

for all v1, v2, u ∈ K,

(c) The mapping u 7→ N(T (u), S(v)) is ψ-strongly monotone, i.e.,

(N(T (u1), S(v))−N(T (u2), S(v)), u1 − u2)
≥ ‖u1 − u2‖2ψ(‖u1 − u2‖)

for all u1, u2, v ∈ K.
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From Lemma 2.3, it follows that the SNICP(f, h, g, N, K) has a solution if and
only if the mapping F defined by (7) has a fixed point. For all x, y ∈ H, we have

‖F (x)− F (y)‖(9)
= ‖PK(x)− PK(y)− ρ(N(T (PK(x)), S(PK(x)))−N(T (PK(y)), S(PK(y))))‖
≤ ‖PK(x)− PK(y)− ρ(N(T (PK(x)), S(PK(x)))−N(T (PK(y)), S(PK(x))))‖

+ ρ‖N(T (PK(y)), S(PK(x)))−N(T (PK(y)), S(PK(y)))‖.

It follows from (a)∼(c) that

‖PK(x)− PK(y)− ρ(N(T (PK(x)), S(PK(x)))−N(T (PK(y)), S(PK(x))))‖2(10)
≤ ‖PK(x)− PK(y)‖2 − 2ρψ(‖PK(x)− PK(y)‖)‖PK(x)− PK(y)‖2

+ ρ2φ2(‖PK(x)− PK(y)‖)‖PK(x)− PK(y)‖2

and

‖N(T (PK(y)), S(PK(x)))−N(T (PK(y)), S(PK(y)))‖(11)
≤ ϕ(‖PK(x)− PK(y)‖)‖PK(x)− PK(y)‖.

Since φ and ϕ are both the increasing mappings and ψ is the decreasing mapping,
from (9)∼(11) and Lemma 2.2, we have

(12) ‖F (x)− F (y)‖ ≤ Ψ(‖x− y‖)‖x− y‖

for all x, y ∈ H, where

(13) Ψ(t) =
√

1− 2ρψ(t) + ρ2φ2(t) + ρϕ(t)

for all t ∈ [0,∞). By the condition (8), Ψ(t) < t for all t ∈ [0,∞). Now, let Φ(t) in
Lemma 3.1 be defined by Φ(t) = tΨ(t) for all t ∈ [0,∞) \ {0}. Then we have

(14) Φ(t) < t

for all t ∈ [0,∞) \ {0}. Moreover, the Hilbert space H is a complete metrically
convex metric space. It follows from (12)∼(14) and Lemma 3.1 that F has a unique
fixed point in H and so the SNICP(f, h, g, N, K) has a solution. Furthermore, if g
is a one-to-one mapping, it is easy to see that the solution is unique. This completes
the proof. ¤

Example 3.1. Let H = (−∞, +∞), K = [0, +∞) and D = (0, +∞). Let

f(x) = g(x) = ln x, h(x) = cos ln x

for all x ∈ D and
N(u, v) = α sin u + βu + γv
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for all u, v ∈ H, where α > 0, β > 0 and γ > 0 are all constants such that α < β
and γ < β − α. Then

N(f(x), h(y)) = α sin ln x + β ln x + γ cos ln y

for all x, y ∈ D. It is easy to see that K∗ = [0, +∞) and K ⊂ g(D). Setting
φ = α + β, ϕ = γ and ψ = β − α, we know that the conditions (i)-(iv) and (8) of
Theorem 3.1 are satisfied and the SNICP(f, h, g, N, K) has a unique solution z = 1.

From Theorem 3.1, we have the following:

Theorem 3.2. Let H be a real Hilbert space (not necessarily a Hilbert lattice)
and D be a nonempty subset of H. Let f, g : D → H be two mappings such that
K ⊂ g(D) and

(i) The mapping f is φ-Lipschitz continuous with respect to g,

(ii) The mapping f is ψ-strongly monotone with respect to g,

(iii) φ is an increasing mapping and ψ is a decreasing mapping.

If there exists a real number ρ > 0 such that

ρφ2(t) < 2ψ(t), ψ(t) ≤ φ(t)

for all t ∈ [0,∞), then the implicit complementarity problem (4) has a solution. In
addition, if g is a one-to-one mapping, the solution is unique.
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