• Title/Summary/Keyword: finite group action

Search Result 50, Processing Time 0.021 seconds

CLASSIFICATION OF FREE ACTIONS OF FINITE GROUPS ON 3-DIMENSIONAL NILMANIFOLDS

  • Koo, Daehwan;Oh, Myungsung;Shin, Joonkook
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1411-1440
    • /
    • 2017
  • We study free actions of finite groups on 3-dimensional nil-manifolds with the first homology ${\mathbb{Z}}^2{\oplus}{\mathbb{Z}}_p$. By the works of Bieberbach and Waldhausen, this classification problem is reduced to classifying all normal nilpotent subgroups of almost Bieberbach groups of finite index, up to affine conjugacy.

On the Enciphering by Using One-Way Function of the Finite Ring (유한환의 일향함수를 이용한 암호화에 대하여)

  • Kim, Chul
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.1 no.1
    • /
    • pp.79-84
    • /
    • 1991
  • We construct one-way function based on a finite ring. One-way function in this paper means that to find the inverse of the function is hard computationally. We have used the extension of group action to construct this function and applied it to encipher the given plain text. To decipher the enciphered text generated by this function is considerd\ed a hard problem. but not impossible theoretically. However, a successful enciphering system. for example, RSA system which depends on the difficulty of factoring, need not have mathematically perfectness.

ON THE S1-EULER CHARACTERISTIC OF THE SPACE WITH A CIRCLE ACTION ii

  • HAN, SNAG-EON
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • The $S^1$-Eule characteristics of X is defined by $\bar{\chi}_{S^1}(X)\;{\in}\;HH_1(ZG)$, where G is the fundamental group of connected finite $S^1$-compact manifold or connected finite $S^1$-finite complex X and $HH_1$ is the first Hochsch ild homology group functor. The purpose of this paper is to find several cases which the $S^1$-Euler characteristic has a homotopic invariant.

  • PDF

STRUCTURES OF GEOMETRIC QUOTIENT ORBIFOLDS OF THREE-DIMENSIONAL G-MANIFOLDS OF GENUS TWO

  • Kim, Jung-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.859-893
    • /
    • 2009
  • In this article, we will characterize structures of geometric quotient orbifolds of G-manifold of genus two where G is a finite group of orientation preserving diffeomorphisms using the idea of handlebody orbifolds. By using the characterization, we will deduce the candidates of possible non-hyperbolic geometric quotient orbifolds case by case using W. Dunbar's work. In addition, if the G-manifold is compact, closed and the quotient orbifold's geometry is hyperbolic then we can show that the fundamental group of the quotient orbifold cannot be in the class D.

A CYCLIC GROUP ACTION ON THE NILMANIFOLD

  • Shin, Joonkook;Kim, Jong-Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.71-79
    • /
    • 2001
  • We study only free actions of finite abelian groups G on the 3-dimensional nilmanifold, up to topological conjugacy. we shall deal with only one out of 15 distinct almost Bieberbach groups up to Seifert local invariant.

  • PDF

FREE ACTIONS OF FINITE GROUPS ON 3-DIMENSIONAL NILMANIFOLDS WITH HOMOTOPICALLY TRIVIAL TRANSLATIONS

  • Koo, Daehwan;Park, Eunmi;Shin, Joonkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.113-132
    • /
    • 2020
  • We show that if a finite group G acts freely with homotopically trivial translations on a 3-dimensional nilmanifold 𝓝p with the first homology ℤ2 ⊕ ℤp, then either G is cyclic or there exist finite nonabelian groups acting freely on 𝓝p which yield orbit manifolds homeomorphic to 𝓝/𝜋3 or 𝓝/𝜋4.

Finite, Fiber-preserving Group Actions on Elliptic 3-manifolds

  • Peet, Benjamin
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.363-388
    • /
    • 2022
  • In two previous papers the author presented a general construction of finite, fiber- and orientation-preserving group actions on orientable Seifert manifolds. In this paper we restrict our attention to elliptic 3-manifolds. For illustration of our methods a constructive proof is given that orientation-reversing and fiber-preserving diffeomorphisms of Seifert manifolds do not exist for nonzero Euler class, in particular elliptic 3-manifolds. Each type of elliptic 3-manifold is then considered and the possible group actions that fit the given construction. This is shown to be all but a few cases that have been considered elsewhere. Finally, a presentation for the quotient space under such an action is constructed and a specific example is generated.

RINGS WITH A FINITE NUMBER OF ORBITS UNDER THE REGULAR ACTION

  • Han, Juncheol;Park, Sangwon
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.655-663
    • /
    • 2014
  • Let R be a ring with identity, X(R) the set of all nonzero, non-units of R and G(R) the group of all units of R. We show that for a matrix ring $M_n(D)$, $n{\geq}2$, if a, b are singular matrices of the same rank, then ${\mid}o_{\ell}(a){\mid}={\mid}o_{\ell}(b){\mid}$, where $o_{\ell}(a)$ and $o_{\ell}(b)$ are the orbits of a and b, respectively, under the left regular action. We also show that for a semisimple Artinian ring R such that $X(R){\neq}{\emptyset}$, $$R{{\sim_=}}{\oplus}^m_{i=1}M_n_i(D_i)$$, with $D_i$ infinite division rings of the same cardinalities or R is isomorphic to the ring of $2{\times}2$ matrices over a finite field if and only if ${\mid}o_{\ell}(x){\mid}={\mid}o_{\ell}(y){\mid}$ for all $x,y{\in}X(R)$.

A NOTE ON g-SEMISIMPLICITY OF A FINITE-DIMENSIONAL MODULE OVER THE RATIONAL CHEREDNIK ALGEBRA OF TYPE A

  • Gicheol Shin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • The purpose of this paper is to show that a certain finite dimensional representation of the rational Cherednik algebra of type A has a basis consisting of simultaneous eigenvectors for the actions of a certain family of commuting elements, which are introduced in the author's previous paper. To this end, we introduce a combinatorial object, which is called a restricted arrangement of colored beads, and consider an action of the affine symmetric group on the set of the arrangements.