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A NOTE ON g-SEMISIMPLICITY OF A

FINITE-DIMENSIONAL MODULE OVER THE

RATIONAL CHEREDNIK ALGEBRA OF TYPE A

Gicheol Shin

Abstract. The purpose of this paper is to show that a certain
finite dimensional representation of the rational Cherednik algebra
of type A has a basis consisting of simultaneous eigenvectors for
the actions of a certain family of commuting elements, which are
introduced in the author’s previous paper. To this end, we introduce
a combinatorial object, which is called a restricted arrangement of
colored beads, and consider an action of the affine symmetric group
on the set of the arrangements.

1. Introduction

Throughout this paper, let n be a fixed integer greater than or equal
to 3, and let r a positive integer with gcd(r, n) = 1, unless otherwise
stated.

In the representation theory of the symmetric group, Young’s semi-
normal construction describes each irreducible representation of the sym-
metric group in terms of a basis consisting of simultaneous eigenvectors
for the Jucys-Murphy elements. In the construction, each simultaneous
eigenspace for the Jucys-Murphy elements is one-dimensional or zero.

In [4], the author analyzes a certain representation of the rational
Cherednik algebra (rational double affine Hecke algebra) of type gln by
similar methods. To be precise, the representation is described with a
basis consisting of simultaneous eigenvectors for the Dunkl-Cherednik
elements, introduce by Cherednik([2]), which are analogs to the Jucys-
Murphy elements.
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In this article, we develop an analogous theory for sln. We study
a finite dimensional representation of the rational Cherednik algebra
of type sln in terms of the actions of the modified Dunkl-Cherednik
elements which are introduced in [5]. The purpose of this paper is to
show that the finite dimensional representation of the rational Cherednik
algebra of type sln has a basis consisting of simultaneous eigenvectors for
the actions of the modified Dunkl-Cherednik elements; moreover, each
simultaneous eigenspace is one-dimensional or zero.

The outline of this paper is as follows. In Section 2, we introduce a
combinatorial object, which is called a restricted arrangement of colored
beads, and consider an action of the affine symmetric group on the set of
the arrangements. In Section 3, we review the definition of the rational
Cherednik algebra of type A and several facts about its representations.
In Section 4, we prove the main theorem by investigating the relation-
ship between the action on restricted arrangements and properties of
representations of the rational Cherednik algebra of type A.

2. Restriced arrangements of colored beads

Let n be a fixed positive integer. Recall that an (extended) affine
permutation is a bijection w : Z → Z subject to the condition:

w(m+ n) = w(m) + n for all m ∈ Z.

For example, the simple transpositions si (1 ≤ i ≤ n − 1) and the
translation π are affine permutations, where si, π : Z → Z are defined as

si(m) =


m+ 1 if m ≡ i (mod n),

m− 1 if m ≡ i+ 1 (mod n),

m otherwise,

and π(m) = m + 1 for all m ∈ Z. We denote by S̃n the group of the
affine permutations.

Let (am)∞m=−∞ be a bi-infinite sequence of integers. We say that (am)
is n-periodic if am+n = am − 1 for every m ∈ Z. By periodicity, an n-
periodic bi-infinite sequence (am)∞m=∞ is completely determined by the
n terms a1, a2, . . . , an. For convenience, we also denote by [a1, a2, . . . , an]

the n-periodic bi-infinite sequence (am). Note that the group S̃n natu-
rally acts on the set of the n-periodic bi-infinite sequences of integers as
follows:

w · (am) = (aw−1(m)) (w ∈ S̃n).
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Definition 2.1. Let n(≥ 3) and r be positive integers with gcd(r, n) =
1, and let (am)∞m=−∞ an (n − 1)-periodic bi-infinite sequence of inte-

gers. A transposition si ∈ S̃n−1(1 ≤ i ≤ n − 2) is said to be an
(r, n)-admissible shift of type I for (am) if ai ̸= ai+1. Also, we

say that π ∈ S̃n−1 is a (r, n)-admissible shift of type II for (am) if
an−1 ̸= r − 1.

Example 2.2. In case of r = 2 and n = 5, the transposition s3 is a
(2, 5)-admissible shift of type I for [0, 1, 1, 0], while s2 is not admissible
for [0, 1, 1, 0]. Also, in this case, the translation π is a (2, 5)-admissible
shift of type II for [0, 1, 1, 0].

−1 0 0 −1· · ·0 1 1 01 2 2 1· · ·
s3

−1 0 −1 0 · · ·0 1 0 11 2 1 2· · ·

Figure 1. (2, 5)-admissible shift of type I for [0, 1, 1, 0]

−1 0 0 −1· · ·0 1 1 01 2 2 1· · ·
π

−1 0 0 · · ·0 1 1 01 2 2 12· · ·

Figure 2. (2, 5)-admissible shift of tpye II for [0, 1, 1, 0]

Definition 2.3. An (n−1)-periodic bi-infinite sequence [a1, . . . , an−1]
is called an (r, n)-restricted arrangement of Z-colored beads if ei-
ther [a1, . . . , an−1] = [0, . . . , 0] or there exists a finite sequence of affine
permutations w1, w2, . . . , wt ∈ {s1, . . . , sn−2, π} such that

[a1, . . . , an−1] = wt · · ·w2w1 · [0, . . . , 0]

and wj is an (r, n)-admissible shift of either type I or type II for wj−1 · · ·w1·
[0, . . . , 0] for each 2 ≤ j ≤ t.

Example 2.4. In case of r = 2 and n = 5, the sequence [0, 1, 1, 0] is
a (2, 5)-restricted arrangement of Z-colored beads because

[0, 1, 1, 0] = s1s2ππ · [0, 0, 0, 0].

[0, 0, 0, 0]
π−→ [1, 0, 0, 0]

π−→ [1, 1, 0, 0]
s2−→ [1, 0, 1, 0]

s1−→ [0, 1, 1, 0]
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Example 2.5. The (n − 1)-periodic bi-infinite sequence [r, . . . , r]
is not an (r, n)-restricted arrangement. In fact, if [r, . . . , r] is a re-
stricted arrangement, then there exists an (r, n)-admissible shift w ∈
{s1, . . . , sn−2, π} for w−1 · [r, · · · , r]. However, for each 1 ≤ i ≤ n − 2,
the transposition si is not admissible for s−1

i · [r, · · · , r] = [r, · · · , r], and
π is not admissible for π−1 · [r, · · · , r, r] = [r, · · · , r, r − 1].

We denote by RA(r,n) the set of all (r, n)-restricted arrangements of
Z-colored beads.

Theorem 2.6. The set RA(r,n) of all (r, n)-restricted arrangement of

Z-colored beads consists of exactly rn−1 elements. Moreover,

RA(r,n) = {[a1, · · · , an−1] | a1, . . . , an−1 ∈ {0, 1, . . . , r − 1}}.

Proof. Consider the map ℓ : RA(r,n) −→ Z defined by

ℓ([a1, . . . , an−1]) =
n−1∑
m=1

am.

By straightforward computation, we have

ℓ([0, . . . , 0]) = 0,

ℓ(si · [a1, . . . , an−1]) = ℓ([a1, . . . , an−1]) for each 1 ≤ i ≤ n− 2, and

ℓ(π · [a1, . . . , an−1]) = ℓ([a1, . . . , an−1]) + 1.

From the definition of RA(r,n), we directly see that for every restricted
arrangement [a1, . . . , an−1] ∈ RA(r,n), each ai is nonnegative; hence, we
have ℓ([a1, . . . , an−1]) ≥ 0.

We first show that if [a1, . . . , an−1] ∈ RA(r,n), then 0 ≤ ai ≤ r − 1
for all 1 ≤ i ≤ n − 1. Assume to the contrary that there exists an
(r, n)-restricted arrangement [a1, . . . , an−1] such that ai ≥ r for some
1 ≤ i ≤ n − 1. We may assume that [a1, · · · , an−1] is a restricted
arrangment with ai ≥ r for some 1 ≤ i ≤ n − 1 of minimal ℓ0 =
ℓ([a1, · · · , an−1]). Then we can directly see ℓ0 ≥ r > 0; in particular,
[a1, . . . , an−1] ̸= [0, . . . , 0]. Since [a1, . . . , an−1] ∈ RA(r,n), there exists
a sequence w1, w2, . . . , wt ∈ {s1, . . . , sn−2, π} such that [a1, . . . , an−1] =
wt · · ·w2w1 · [0, . . . , 0] and wj is an (r, n)-admissible shift of either type
I or type II for wj−1 · · ·w1 · [0, . . . , 0] for each 2 ≤ j ≤ t. Note that
ℓ([a1, . . . , an−1]) > 0 and ℓ([0, . . . , 0]) = 0, from which it follows that
there exists a maximal index k(1 ≤ k ≤ t) such that wk is an admis-
sible shift of type II. For wk · · ·w1 · [0, . . . , 0] = [b1, . . . , bn−1], the tuple
(b1, . . . , bn−1) is a rearrangement of (a1, . . . , an−1) since wk+1, . . . , wt ∈
{s1, . . . , sn−2}. Note that wk is an (r, n)-admissible shift of type II for
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w−1
k · [b1, . . . , bn−1] = [b2, . . . , bn−1, b1 − 1] ∈ RA(r,n), or equivalently

b1 ̸= r. Thus, (b2, . . . , bn−1, b1 − 1) still has at least one component
greater than or equal to r. However, we have ℓ(w−1

k · [b1, . . . , bn−1]) =
ℓ([b2, . . . , bn−1, b1 − 1]) = ℓ0 − 1, which contradicts the minimality of ℓ0.

We now assume that [c1, . . . , cn−1] (c1, . . . , cn−1 ∈ {0, 1, . . . , r − 1})
is an (n − 1)-periodic sequence of minimal ℓ0 = ℓ([c1, . . . , cn−1]) which
does not belong to RA(r,n). Since [0, . . . , 0] ∈ RA(r,n), we may assume
c1 ̸= 0 after applying the actions of s1, . . . , sn−2 if necessary. Note
that ℓ(π−1 · [c1, . . . , cn−1]) = ℓ([c2, . . . , cn−1, c1 − 1]) = ℓ0 − 1 < ℓ0 and
0 ≤ c1 − 1 < r − 1, we have [c2, . . . , cn−1, c1 − 1] ∈ RA(r,n) by the
minimality of ℓ0. Thus, [c1, . . . , cn−1] = π·[c2, . . . , cn−1, c1−1] ∈ RA(r,n),
which is absurd.

Example 2.7. In case of r = 2 and n = 5, there are exactly 24(= 16)
(2, 5)-restricted arrangements of Z-colored beads:

[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],

[0, 0, 0, 1], [1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1],

[0, 1, 0, 1], [0, 0, 1, 1], [0, 1, 1, 0], [1, 1, 1, 0],

[1, 1, 0, 1], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1].

[0, 0, 0, 0]

[1, 0, 0, 0] [0, 1, 0, 0] [0, 0, 1, 0] [0, 0, 0, 1]

[1, 1, 0, 0] [1, 0, 1, 0]

[1, 0, 0, 1]

[0, 1, 1, 0]

[0, 1, 0, 1] [0, 0, 1, 1]

[1, 1, 1, 0] [1, 1, 0, 1] [1, 0, 1, 1] [0, 1, 1, 1]

[1, 1, 1, 1]

π

π

π

π

π

π

π

π

π

π

s1 s2 s3

s2 s2s3

s1

s1

s3

s3 s2 s1

Figure 3. (2, 5)-restricted arrangements of Z-colored beads

3. Rational Cherednik algebra

In this section, we briefly review the definition of the rational Chered-
nik algebra Hn(c) of type sln, and give several facts about its represen-
tations in [1], [3], and [5].
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Definition 3.1. Let c ∈ C \ {0}. The rational cherednik algebra
(abbreviated RCA) of type gln associated with c, denoted by Hn(c), is
the unital associative C-algebra defined by the following presentation.

generators: x1, . . . , xn, s1, . . . , sn−1, y1, . . . , yn
relations: s2i = 1 (1 ≤ i ≤ n− 1),

sisi+1si = si+1sisi+1 (1 ≤ i < n− 1),
sisj = sjsi (|i− j| > 1),
xixj = xjxi, yiyj = yjyi (1 ≤ i, j ≤ n),
sixi = xi+1si, siyi = yi+1si (1 ≤ i ≤ n− 1),
sixj = xjsi, siyj = yjsi (j ̸= i, i+ 1),

yixj − xjyi =

{
csij if i ̸= j,

1− c
∑

k ̸=i si,k if i = j,

where si,i+1 = si+1,i = si and si,j =

{
sisi+1 . . . sj−1 . . . si+1si if i < j,

sisi−1 . . . sj+1 . . . si−1si if i > j

for i, j ∈ {1, . . . , n− 1} with i ̸= j.

The subalgebra Hn(c) of Hn(c) generated by x2, . . . , xn, s1, . . . , sn−1,
and y2, . . . , yn is called the RCA of type sln associated with c, where

xi = xi − x1, yi = yi − 1
n(y1 + · · ·+ yn)

for i ∈ {2, . . . , n}.

Remark 3.2. It is known that the subalgebra X (resp. Y) generated
by x2, . . . , xn (resp. y2, . . . , yn) is isomorphic to the polynomial algebra
C[T2, . . . , Tn] via the isomorphism given by xi 7→ Ti (resp. yi 7→ Ti), and
that the subalgebra generated by s1, . . . , sn−1 is isomorphic to the group
algebra CSn. Also, it is well known as the PBW theorem for rational
Cherednik algebras that the elements

xα2
2 · · ·xαn

n wyβ2
2 · · · yβn

n (αi ≥ 0, βj ≥ 0, and w ∈ Sn)

form a basis of the vector space Hn(c) over C, where the subalgebra
generated by s1, . . . , sn−1 is identified with CSn. See [3] for details.

Let B be the subalgebra generated by Y and CSn, and consider a
one-dimensional B-module C on which the action of B is defined by:

yi · 1 = 0 (i ∈ {2, . . . , n}), w · 1 = 1(w ∈ Sn).

By induction, we can construct an infinite dimensional module over
Hn(c):

Vn(c) = Ind
Hn(c)
B C = Hn(c)⊗B C,
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which is isomorphic to X ⊗ C as a vector space over C due to the
PBW theorem. It is the fact that the module Vn(c) has a unique max-
imal proper submodule Mn(c), from which it follows that the quotient
Ln(c) = Vn(c)/Mn(c) is a unique simple quotient module. See [3] for
details.

It is known that if c = r
n with gcd(r, n) = 1, then Ln(

r
n) is a finite

dimensional Hn(
r
n)-module of dimension rn−1. See [1] for more details.

In the next section, we will prove that the finite dimensional Hn(
r
n)-

module Ln(
r
n) has a basis consisting of simultaneous eigenvectors for

the actions of the modified Dunkl-Cherednik elements g2, . . . , gn which
are defined below.

Definition 3.3. 1. For each i ∈ {2, 3, . . . , n}, we define the mod-
ified Dunkl-Cherednik element gi to be the element

gi = −1

c
xiyi +

i−1∑
j=1

sji ∈ Hn(c).

2. For each i ∈ {2, 3, · · · , n − 1}, we defined the intertwining ele-
ment φi to be the element

φi = 1 + si(gi − gi+1) ∈ Hn(c).

3. The element r = x2s2s3 · · · sn−1 ∈ Hn(c) is called the raising
element.

4. The element l = −1
csn−1 · · · s3s2(s1y2 − y2g2) is called the lower-

ing element.

Proposition 3.4 ([5]). Let gi, φi, r, l be as defined above. Then the
following relations hold.

1. gigj = gjgi for all i, j ∈ {2, 3, · · · , n}
2. gjφi = φigsi(j) for i ∈ {2, 3, . . . , n− 1} and j ∈ {2, 3, · · · , n}.
3. φ2

i = (1 + gi − gi+1)(1− gi + gi+1) for all i ∈ {2, 3, . . . , n− 1}.
4. g2r = r(gn − 1

c ) and gir = rgi−1 for i ∈ {3, · · · , n}.
5. rl = (1 + gi)(1− g1) and lr = (1 + gn−1 − 1

c )(1− gn−1 +
1
c ).

Let G denote the commutative subalgebra of Hn(c) generated by the
elements g2, g3, . . . , gn. Given a module M over Hn(c), we consider
simultaneous eigenvectors in M for the actions of all elements of G.

Definition 3.5. Let M be an Hn(c)-module. An (n− 1)-tuple a =
(a2, a3, · · · , an) ∈ Cn−1 is called a weight of M if there exists a nonzero
vector v ∈ M such that gi · v = aiv for all i ∈ {2, 3, . . . , n}, and such
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a vector v is called a weight vector of weight a. Also, for a weight
a ∈ Cn−1 of M , the subspace

Ma = {v ∈ M | gi · v = aiv for all i}

is called the weight space with respect to the weight a.

The following result can be obtained directly from Proposition 3.4.

Proposition 3.6 ([5] Theorem 4.3). Let M be an Hn(c)-module.

1. If a vector v ∈ M is a weight vector of weight (a2, · · · , an) with
ai−ai+1 ̸= ±1 for some 2 ≤ i ≤ n−1, then φi ·v is a weight vector
of weight (a2, · · · , ai+1, ai, · · · , an).

2. If a vector v ∈ M is a weight vector of weight (a2, · · · , an) with an−
1
c ̸= ±1, then r·v is a weight vector of weight (an− 1

c , a2, · · · , an−1).

Definition 3.7. An Hn(c)-module M is said to be g-semisimple if
M has a basis consisting of weight vectors; in other words, M can be
decomposed into a direct sum of weight spaces:

M =
⊕
a

Ma,

where the direct sum is taken over all weights a of M .

4. Main theorem: g-semisimplicity

Let a = [a1, . . . , an−1] be an (r, n)-restricted arrangement of Z-colored
beads. Consider the bijection fa : {1, 2, · · · , n − 1} → {1, 2, · · · , n − 1}
satisfying the following conditions:

1. if ai < aj , then fa(i) < fa(j), and
2. if ai = aj and i < j, then fa(i) < fa(j).

We define the map wt: RA(r,n) → Cn−1 by

wt(a) =
(
fa(1)− a1 ·

n

r
, fa(2)− a2 ·

n

r
, · · · , fa(n− 1)− an−1 ·

n

r

)
.

Example 4.1. In the case of r = 2 and n = 5, let a = [0, 1, 1, 0].
Then we have fa(1) = 1, fa(2) = 3, fa(3) = 4, and fa(4) = 2. Also, we
directly see wt(a) = (0, 12 ,

3
2 , 1).

Lemma 4.2. The map wt: RA(r,n) → Cn−1, as defined above, is
injective.
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Proof. In order to show that the map wt is injective, assume that
wt(a) = wt(b) for a = [a1, . . . , an−1],b = [b1, . . . , bn−1] ∈ RA(r,n).
Then for each 1 ≤ i ≤ n − 1, we have fa(i) − ai · n

r = fb(i) − bi · n
r , or

equivalently, fa(i)−fb(i) = (ai−bi) · nr . Hence, (ai−bi) · nr is an integer.
Since −r + 1 ≤ ai − bi ≤ r − 1 and gcd(n, r) = 1, we have ai = bi for
each 1 ≤ i ≤ n− 1.

Lemma 4.3. Let a = [a1, . . . , an−1] ∈ RA(r,n), and let M an Hn(
r
n)-

module.

1. Assume that si is an (r, n)-admissible shift of type I for a, and
that a nonzero vector v ∈ M is a weight vector of weight wt(a).
Then φi+1 · v is a weight vector of weight wt(si · a).

2. Assume that π is an (r, n)-admissible shift of type II for a, and
that a nonzero vector v ∈ M is a weight vector of weight wt(a).
Then r · v is a weight vector of weight wt(π · a).

Proof. We first assume that si is an (r, n)-admissible shift of type I
for a = [a1, · · · , an−1], i.e., ai ̸= ai+1. Since 0 ≤ ai, ai+1 ≤ r − 1 and
gcd(r, n) = 1, (ai− ai+1) · nr is not an integer, from which it follows that
(fa(i)− ai · n

r )− (fa(i+ 1)− ai+1 · n
r ) ̸= ±1. Hence, by Proposition 3.6,

for a weight vector v ∈ M of weight wt(a), φi+1 · v is a weight vector of
weight wt(si · a).

We now assume that π is an (r, n)-admissible shift of type II for a, i.e.,
an−1 ̸= r−1. Then (an−1+1) · nr is not an integer because gcd(r, n) = 1.

Thus, we obtain
(
fa(n− 1)− an−1 · n

r

)
− n

r ̸= ±1. It follows that r · v is
a weight vector of weight(

fa(n− 1)− (an−1 + 1) · n
r
, fa(1)− a1 ·

n

r
, . . . fa(n− 2)− an−2 ·

n

r

)
,

which is equal to wt(π · a) by Proposition 3.6.

Theorem 4.4. The finite dimensional representation Ln(
r
n) of the

algebra Hn(
r
n) is g-semisimple. Moreover, each weight space of Ln(

r
n)

is one-dimensional.

Proof. By construction, 1 ⊗ 1 ∈ Vn(
r
n) is a weight vector of weight

(1, 2, . . . , n−1). Since there is no a proper submodule of Vn(
r
n) contain-

ing 1⊗1, the maximal proper submodule Mn(
r
n) does not contain 1⊗1.

Hence wt([0, 0, . . . , 0]) = (1, 2, · · · , n − 1) is a weight of the quotient
Ln(

r
n). By applying Lemma 4.3 inductively, we directly see that wt(a)

for every a ∈ RA(r,n) is a weight of Ln(
r
n). Thus, there are rn−1 weight

vectors in Ln(
r
n) of distinct weights because the map wt is injective.

Since the weight vecotrs of rn−1 distinct weights are linearly independent
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and dimLn(
r
n) = rn−1, the representation Ln(

r
n) has a basis consisting

of weight vectors, and each weight space is one-dimensional.

Example 4.5. Let r = 2 and n = 5. The finite dimensional repre-
sentation L5(

2
5) has exactly 16 weights. Figure 4 describes all weights of

L5(
2
5) and local actions of the intertwining elements φi and the raising

element r among the corresponding weight spaces.

(1, 2, 3, 4)

( 3
2
, 1, 2, 3) (1, 3

2
, 2, 3) (1, 2, 3

2
, 3) (1, 2, 3, 3

2
)

( 1
2
, 3
2
, 1, 2) ( 1

2
, 1, 3

2
, 2)

( 1
2
, 1, 2, 3

2
)

(1, 1
2
, 3
2
, 2)

(1, 1
2
, 2, 3

2
) (1, 2, 1

2
, 3
2
)

(− 1
2
, 1
2
, 3
2
, 1) (− 1

2
, 1
2
, 1, 3

2
) (− 1

2
, 1, 1

2
, 3
2
) (1,− 1

2
, 1
2
, 3
2
)

(− 3
2
,− 1

2
, 1
2
, 3
2
)

r

r

r

r

r

r

r

r

r

r

ϕ2 ϕ3 ϕ4

ϕ3 ϕ3
ϕ4

ϕ2

ϕ2

ϕ4

ϕ4 ϕ3 ϕ2

Figure 4. Decomposition of L5(
2
5) into a direct sum of

its weight spaces
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