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CLASSIFICATION OF FREE ACTIONS OF FINITE GROUPS
ON 3-DIMENSIONAL NILMANIFOLDS

DAEaWAN KOO, MYUNGSUNG OH, AND JOONKOOK SHIN

ABSTRACT. We study free actions of finite groups on 3-dimensional nil-
manifolds with the first homology Z2 @ Z,,. By the works of Bieberbach
and Waldhausen, this classification problem is reduced to classifying all
normal nilpotent subgroups of almost Bieberbach groups of finite index,
up to affine conjugacy.

1. Introduction

The classifying finite group actions on a 3-dimensional nilmanifold can be
understood by the works of Bieberbach, L. Auslander and Waldhausen [5,6,16].
Free actions of cyclic, abelian and finite groups on the 3-torus were studied in
[7], [10] and [4], respectively. In [4], the authors generalized the result of [10]
by changing the finite abelian groups condition into the finite groups condition.
Our motivation is analogous to this situation.

Let H be the 3-dimensional Heisenberg group; i.e., H consists of all 3 x 3
real upper triangular matrices with diagonal entries 1. Thus H is a simply
connected, 2-step nilpotent Lie group, and it fits an exact sequence

1R H >R =1,

where R = Z(H), the center of 1. Hence H has the structure of a line bundle
over R%2. We take a left invariant metric coming from the orthonormal basis

0 0 1 0 1 0 0 0 0
000,000,001
0 0 0 0 0 0 0 0 0

for the Lie algebra of . This is, what is called, the Nil-geometry and its
isometry group is Isom(H) = H x O(2) [13,14]. All isometries of H preserve
orientation and the bundle structure.

We say that a closed 3-dimensional manifold M has a Nil-geometry if there
is a subgroup 7 of Isom(#) so that 7 acts properly discontinuously and freely
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with quotient M = H / . The simplest such a manifold is the quotient of H
by the lattice consisting of integral matrices. For each integer p > 0, let

1 7 2z
p

r,= 01 m||lmneZ
0 0 1

Then I'y is the discrete subgroup of H consisting of all matrices with integer
entries and I, is a lattice of H containing I'; with index p. Clearly
Hi(H/Tp; Z) =T/ [y, Ip] = 7’ & Lp.
Note that these I')’s produce infinitely many distinct nilmanifolds
N, =H/T),
covered by N.

It is interesting that if a finite group acts freely on the (standard) 3-dimen-
sional nilmanifold Aj with the first homology Z?, then it is cyclic (see [2]). Free
actions of finite abelian groups on the 3-dimensional nilmanifold with the first
homology Z?* & 7Z,, were classified in [1]. In this paper we study free actions of
finite groups deleting an abelian condition on 3-dimensional nilmanifolds with
the first homology Z* & Z,, by utilizing the method used in [1] and classify all
such group actions, up to topological conjugacy. This classification problem
is reduced to classifying all normal nilpotent subgroups of almost Bieberbach
groups of finite index, up to affine conjugacy. This work contains the results of
[1] as corollaries.

Let G be a finite group acting freely on the nilmanifold A,. Then clearly,
M = N, /G is a topological manifold, and 7 = 7 (M) C TOP(H) is isomorphic
to an almost Bieberbach group. Let 7/ be an embedding of 7 into Aff(H). Such
an embedding always exists. Since any isomorphism between lattices extends
uniquely to an automorphism of H, we may assume the subgroup I', goes to
itself by the embedding m — 7" C Aff(#). Then the quotient group G’ = =’ /T,
acts freely on the nilmanifold N, = H/T',. Moreover, M’ = N,/G’ is an
infra-nilmanifold. Thus, a finite free topological action (G,N),) gives rise to
an isometric action (G’, N,) on the nilmanifold NV,. Clearly, N,,/G and N, /G’
are sufficiently large, see [6, Proposition 2]. By works of Waldhausen and Heil
[5,16], M is homeomorphic to M’.

Definition 1.1. Let groups G; act on manifolds M;, for ¢ = 1,2. The action
(G1, My) is topologically conjugate to (Ga, Ma) if there exists an isomorphism
0 : Gy — G5 and a homeomorphism h : M; — M such that

h(g-z) = 0(g) - h(x)
for all x € M; and all g € G;. When GG; = G5 and M; = Ms, topologically
conjugate is the same as weakly equivariant.

For N, /G and N,/G’ being homeomorphic implies that the two actions
(G,N,) and (G',N,) are topologically conjugate. Consequently, a finite free
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action (G, N,) is topologically conjugate to an isometric action (G’, N,). Such
a pair (G',N,) is not unique. However, by the result obtained by Lee and
Raymond [9], all the others are topologically conjugate.

2. Criteria for affine conjugacy

In this section, we develop a technique for finding and classifying all possi-
ble finite group actions on 3-dimensional nilmanifolds with the first homology
Z? & Z,. The problem will be reduced to a purely group-theoretic one. We
quote most of Introduction and Section 2 of [1] in this section for the reader’s
conveniences.

Let I' be any lattice of H and Z(H) be the center of H. Then Z =T NZ(H)
and I'/T' N Z(H) are lattices of Z(H) and H/Z(H), respectively. Therefore,
the lattice I' is an extension of Z by Z2, that is, there is an exact sequence:

12720 —=7Z%—1.

Let a, b and ¢ be elements of I' such that the images of @ and b in Z? generate
72 and c generates the center Z. Then it is known that such I is isomorphic
to one of the following groups, for some k:

Iy = (a,b,c | [bya] =c*, [c,a] = [c,b] =1), k#0,

where [b,a] = b~1a~1ba. This group is realized as a uniform lattice of H if one
takes
1 00
a=|0 11
0 0 1
Remark that I'y is equal to I'_.
The following proposition gives a characterization of an almost Bieberbach
group (see [8]).

)

— O

110 10
b=|0 1 0|,c=]0 1
00 1 0 0

Proposition 2.1. An abstract group 7 is the fundamental group of a 3-dimen-
stonal infra-nilmanifold if and only if w is torsion-free and contains 'y, for some
k >0 as a maximal normal nilpotent subgroup of finite index.

It is well known that all 3-dimensional infra-nilmanifolds are Seifert mani-
folds (see [9,12]). Assume that M is a 3-dimensional infra-nilmanifold. Then M
has a Seifert bundle structure; namely, M is a circle bundle over a 2-dimensional
orbifold with singularities. It is known that there are 15 classes of distinct closed
3-dimensional manifolds M with a Nil-geometry up to Seifert local invariant
[3, Proposition 6.1].

Note that if M =H / 7 is a 3-dimensional infra-nilmanifold, then there is a
diffeomorphism f between H and R®, and an isomorphism ¢ between 7 and
7', where 7’ is a subgroup of

Aff(R?) = R® x GL(3,R)
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such that (w,H) and (7/,R3?) are weakly equivariant. Therefore, an infra-

nilmanifold M = # /7 is diffeomorphic to an affine manifold M’ = R? /x’.
The following is the list for 15 kinds of the 3-dimensional almost Bieberbach

groups imbedded in Aff(H) = H x (R? x GL(2,R)) ([1, pp. 799-801]). We shall

use

1 1 0 100
ti=110 1 0|, I|, to=[]0 1 1|,1],
0 0 1 00 1
10 —3
ts=1|10 1 o |,T],
00 1

respectively, where I is the identity in Aut(H) = R? x GL(2,R). In each
presentation, n is any positive integer and t3 is central except 73 and 74. Note
that ¢; and ¢, are fixed, but k in t3 varies for each 7; ;. For example, & = n for
m1; k = 2n for my, etc.

T = (t1,to, t3 | [ta, t1] = 5 ),
= (t1,ta, tz,a|[ta, t1] = 13", @® = tz,atia” !t =t atea™ =151,
3 = (t1,ta, tg, | [ta, t1] = 37, [ta, t1] = [t3,t2] = 1, atza™ =31,
atia”t =ty aty =t aty", o =t1),
Ty = (t1,ta, tz, o, B [ta, t1] = 137, [ts,t1] = [t3,ta] = [a, t3] = 1,
Btsfr =t31, aty =t atd" aty =ty tats P o = t3, % = t,

Bt =, Bta = t; ' Bt52", af =ty Baty PV,

™
s

7T774 - <t1,t2,t3,0(| [t2)t1 = tgn74

t,ta,ts, a| [ta, t1] = 63772 atia™t = to, atea™t =71, 0t = t3),
3 1
t1,ta, b3, ol [ta, ] = t3", atia™! = tg,atea”t =71 ot =13),
3 1
= (t1,to, tg, a|[to, t1] = 15", atia™" = ty, atpa™ =177, —ts
3 1
= (t1,to, t3, | [ta, t1] = 3, atia™ ! = ty, atpa ™t :t*lt* Jod =ty
3 1 2
= (t1,to, tz, | [ta, t1] = 3", at1a "t = ty, atpa™t =ty o =13 >,
= (t1,to, b3, | [ta, t1] = 3772 atra™ ! = to, atoa™! = t7 151 o = 12),
3 1 2 3
= (t1,ta, tg, | [ta, t1] = 15" 71, atia™' =ty atpa™! —t11t2 o —t3>
= (t1,to, tz, | [ta, t1] = 15", at1a™ = tity, atsa™ ! =71, a® =t3),
= (t1,to, t3, | [ta, 1] =572 atia™! = tit, atea™t =7, a0 = t3),
Tr = (ti,to,ts, 0| [to, ] = 157, atra™! = tity, atsa™t =171, = 13),
]

, atia”! = titg, atsat =171 0 = 13).

Let (G,N,) be a free affine action of a finite group G on the nilmanifold
N,. Then N,,/G is an infra-nilmanifold. Let 7 = 71 (N,/G) and '), = 71 (N}).
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Then 7 is an almost Bieberbach group. In fact, since the covering projection
N, = N,,/G is regular, T, is a normal subgroup of 7.

Definition 2.2. Let 7 C Aff(H) = H xAut(#) be an almost Bieberbach group,
and let N1, N2 be subgroups of m. We say that (N1, 7) is affinely conjugate to
(Na, ), denoted by Ny ~ Na, if there exists an element (t,7) € Aff(H) such
that (t,T)n(t,T)"* =7 and (¢,T)N1(t,T)"* = N».

Our classification problem of free finite group actions (G, N,) with
T (Np/G) =

can be solved by finding all normal nilpotent subgroups N of 7 each of which
is isomorphic to I',, and classify (IV, ) up to affine conjugacy. This procedure
is a purely group-theoretic problem and can be handled by affine conjugacy.

The following proposition [1, Proposition 3.1] is a working criterion for de-
termining all normal nilpotent subgroups of 7 isomorphic to I',.

Proposition 2.3. Let N be a normal nilpotent subgroup of an almost Bieber-
bach group m and isomorphic to I'y. Then N can be represented by a set of

generators
Kdjdg

N = <til1t;ntgla tgbtgz’ 2 >a
where dy,dy are divisors of p; K is determined by ti = [to, t1]; 0 < m < do,
0<n; < Bdde (j=1,2).

“Realization” for the action of G on H/N as an action of G on H/T), =
N, can be done by the following procedure. To describe the natural affine
action of G on the nilmanifold H/N as an action of G on N, we must make
the nilmanifold H /N the nilmanifold N, whose fundamental group is I', and
describe the action on the universal covering level. In other words, the action
of G should be defined on H as affine maps (this is really explaining the liftings
of a set of generators of G in ), and simply say that our action is the affine

action modulo the lattice I',. It is quite easy to achieve this.
Kdydg

Let N = (t;5t55" t22¢5% ¢, ) be a normal nilpotent subgroup of an
almost Bieberbach group 7 which is isomorphic to I',. Then we can find an
automorphism

10 0 0 1
e ) P B ) S
00 1 3; T GhLE] U ad &

such that uNpu~! =T, using the following relations:
Kdydo K
p et T =t p(tPts ) =t plty T Tt =g
Therefore, the conjugation by p € Aff(H) maps 7 into another almost
Bieberbach group in such a way that N maps onto I'y. Suppose {aa, ..., i}
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generates the quotient group G when projected down via m — G, then

{ponp™", ... pop™ '}
describes the action of G on the nilmanifold Np.

3. Free actions of finite groups on the nilmanifold

In this section, we shall find all possible finite groups acting freely (up to
topological conjugacy) on the 3-dimensional nilmanifold N, which yield an
orbit manifold homeomorphic to H/m; (1 < i < 7). This, as in other parts
of calculations, was done by using the program Mathematica [17] and hand-
checked.

Now we shall find all possible finite groups acting freely (up to topological
conjugacy) on the 3-dimensional nilmanifold A, which yield an orbit manifold
homeomorphic to H /.

Lemma 3.1. Let N be a normal nilpotent subgroup of an almost Bieberbach
group ma,ms; (1 = 1,2,3) or mr; (j = 1,2,3,4) which is isomorphic to T'p.
Then N can be represented by one of the following sets of generators

d d Kdqdo d d Kdydo Kdqdo

— 14 2 P — 14 2 2p P

Ny = <t1 t2 ) t2 ) ts >a Ny = <t1 t2 ) t2 t3 ) ts >a
Kdqdo Kdqdo Kdydo Kdqido Kdqdo

N3 = <t(111t;nt3 v tgza tg * >’ Ny = <til1t72nt3 v tg2t3 v tg * >’

where dy, dy are divisors of p; 0 < m < d = ged(dy, da), % € 7 in the case of
2
o, Z—; + ﬁ € 7Z and dy is a common divisor of m and dy in the case of s ;,

g—; + % € Z and dy is a common divisor of m and dy in the case of w7 ;.
Proof. Let N be a normal nilpotent subgroup of 7y isomorphic to I',. Then by
Proposition 2.3, we have

2ndydy

N = (#0132, ¢, 7 ), <0§m<d2,0§£,r<

27Ld1d2 )

Note that we obtained the normalizer Nagy)(m2) of ma in [1]: for r,s € Z,

1 % *
s 0 a b a b

Let d = ged(dy, da). Then there ezdst s,t € Z such :chat d = sdy + tdy. Also
there exist ¢, w € Z such that m = dg+ w (0 < w < d). It is not hard to see

2ndydy

N~ (58 157 )

S(HREA)) e

by using

o O =
o = O
HL\D|$O
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Note that the relation

anldz(_ pm_)

e = ey TR
ShOWS%GZ.
Let
1 0 =z
p=10 1 0 ,(M,{Ol _01]> € Aff(H).
0 0 1

Then we have

1 —dy dym— % +div — mu
atesge = (o ELET ().
0 0 1
_1 0 7%7(1211,
wetmyt = (o 1 a ([SH}) ﬂ)
0 0 1

Let 4 = a,a?,a® for the case of ma,m5,; or 77 ;, respectively. Since N is a

normal nilpotent subgroup of mg, 75 ; or 77 ;, the following two relations
Kdjdy
p(tdets ™t = (t05'5) "t T )T €N,
Kdydg

pltyti)n™ = (t°t5) " (t; 7 )Y €N

show that
2pl pm 2pr
— _ — 7. (f d s 4
S Rddy dy % VT Rag, € (formandms)
2pt  pm | p(m—di) 2pr P

B 7 = P ez (for 1),
U= Kdidy o ad, €L V= RKaa tg €% (ormy)

Similarly, the following two relations

atPit)a"t € N, a(t®th)a™! € N,

show that
dq m? m do
— e, —€l, —€Z, (f i
& dids dy dy (for 5,0
d1 m(m — dl) m d2
—+—————€Z, —€iZ, —€Z, (f ).
& dids dy dy (for 7.5)
Therefore we can get K2dpfd2 € Z and KQdPIsz € 7Z. Since 0 < 4,r < % by
Proposition 2.3, we have £ = 0 or % and r =0 or %;d?. (]
Remark. In the case of ma, the condition £2- € Z in Lemma 3.1 is crucial to

dids
determine the number of affinely non-conjugacy classes when dy, ds and p are

given. In fact, for d = (dy,ds) and p = kD where k € N, D is the least common
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multiple of d; and da, we have - € Z if and only if %—" €7Z. Let q = (d, k).

Then &2 € Z if and only if £22 € Z, where

k=qk', d=qd, (K,d)=1.
Thus d’ is a divisor of m. Since 0 < m < d = qd’, we can get m = 0,d’, . . .,
(g —1)d'.
Kdydo Kdqdo
Let N™ = (t,M#5t4, 13215, t; ) and N™ = (¢, 9y 19245 ¢, 7 )
be normal nilpotent subgroups of an almost Bieberbach group m which are
isomorphic to I',. If N™ is affinely conjugate to N m,, then there exists

1 =z =z " a b
o= (o 5l (LT 1)) vt
v c d
0 0 1

satisfying either

(3.1) p(tr Pt ™)t = B, p(de )t = a2ty
or
(3.2) p(tr Bttt = 12ty p(td )t = e e

From (3.1) or (3.2), we obtain the following relations respectively:

(33) bdg == 0, ddg == dg, ad1 + bm = dl, Cd1 + dm = m’,
or
(34) bdy = dy, dds = m', ady +bm =0, cdi +dm = ds.

From these two relations and the normalizer Nagz)(m) of each almost
Bieberbach group 7, we can get either

£ Y- Y e
(3.6) {‘CL Z}[g 8},mm/0,bc1.

So, we obtain the following theorem.

Theorem 3.2. Let N™ and N™ be normal nilpotent subgroups of an almost
Bieberbach group m which are isomorphic to I', and whose sets of generators
are

Kdjdg , , ,  Kdido
N™ = (Bl td2en g 7 ), N™ = (Mt tdeen ot ).

If m #m’, then N™ is not affinely conjugate to N™.
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Proposition 3.3 (m2). Let N; (i = 1,2,3,4) be a normal nilpotent subgroup
of my in Lemma 3.1 and isomorphic to I'y. Then we have the following:
(1) N1 ~ N if and only if m = 0,dy = p.
) N1 ~ N3 if and only if m = 0,dy = p.
) N1~ Ny if and only if m = 0,dy = da = p.
) No ~ N3 if and only if m = 0,d; = ds.
) No ~ Ny if and only if either m = 0,ds = p, or 2m = dz, 2d; = p.
(6) N3 ~ Ny if and only if m = 0,dy = p.

Proof. (1) Suppose that N; is affinely conjugate to Na. Then there exists

1 = =z ol Ta b
p=110 1 y|, ([0] , [C dD € Nagip)(m2)
0 0 1
satisfying either (3.1) or (3.2). From (3.5), we can get « = fg; and y = —55.

Since p € Nagy)(m2), we have 2z = fil € Z and 2y = —" € Z. Note that
di, dy are divisors of p and 0 < m < d by Lemma 3.1. Thus we have d; = p and
m = 0. Similarly, from (3.6), we can get d; = d2 = p and m = 0. Conversely,
suppose that d; = p and m = 0. Then Ny ~ N» by using

L= 0 o] [t 0
W= 0 1 0], (|:O:| , |:0 1:|) GNAH(H)(FQ).
0 0 1
(4) Suppose that Ny is affinely conjugate to N3. Note that
ndydg __2ndjdp

N3 ~ <til1t;nt; " tgz’ ts ! >
Then there exists 1 € Nagy)(m2) satisfying either (3.1) or (3.2). From (3.5),
we can get x = g—; and y = %pd? Since p € Nag(p)(m2), we have 2z = % S/
and 2y = %‘b € 7Z. Note that dy, do are divisors of p and 0 < m < ds. Thus

we have dy = d = p and m = 0. Next, from (3.6), a similar calculation shows

that
a b 0 1
|:C d:| = |:1 0:| , d1 = dg, m = 0.

The converse is easy by using

100
0] |0 1
p=|{10 1 0 ,(H,L OD € Nas(n)(m2).
0 0 1
The other cases can be done similarly. O

The following theorem can be obtained easily by using Proposition 3.3. From
now on, we shall denote affine conjugacy classes by AC classes.

Notation. ¢{ay,..., ;) means the subgroup generated by conjugations of
aq, ..., by €.
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Theorem 3.4 (m2). Table 2 gives a complete list of all free actions (up to
topological conjugacy) of finite groups G on N, which yield an orbit manifold
homeomorphic to H/ms.

TABLE 2
Generators AC classes of normal nilpotent subgroups Conditions (m > 0)
2ndydy
ity ta,a) Ny = (#9450, 92, ¢y 7
ndydg 2nd; dy
Ny = (#8824, 7 4y 7 ) if m = 0, then dy # p
ndydo 2ndydy
Ny = (tPeme, » td2 g 7 ) if m =0, then dy # p,dy # do
ndydo ndydy 2nd;dy
Ny = e, © t82t, 7ty P ) if m # 0, then either 2m # d
or 2d; # p,
if m =0, then dy # p,d2 # p
where
[0 + 0
Mlz(la(ﬂ]a_d}n 1 ’
L2d2 dida do
rl 1
5= = 0
2
M2<Iv<ﬂp:|a_d}n 1 )
L2d> didy  da
[0 + 0
M3<Iv<ﬂ_L:|7|:d’}7L 1 )
_2d2 21) d1d2 d2
r 1 1
5 - 0
2
L2ds 2p dids d2

Here I is the identity in H.

The realization for the action of G = m2/N; on the nilmanifold H/N;, as
an affine action on the nilmanifold N, , is easy provided that we follow the
“Realization” procedure. The generators of the group G = m2/N; can be
obtained from tq,t2, @« € my. For example, we observe that Ny in 7o is not
equal to I'p, but isomorphic to I'y. To obtain an action of G = w3 /Ny on N,
one has to conjugate the representation of m so that Ny becomes I',, by means
of an automorphism ug € Aut(#H), where

AfE(H)

paty iyt

1
30z

Thus we can see that ps Na g 1= I'p, and the following three elements of

—_

1
|: dl
__m
dida

0

1 _ mp+(+p)di)

dq 2pd?d2

1 __m
d1d2

0 1

1)) e as,
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1 0 5
_1 Pz 0] [1 0
/’L2t2y’2 = 0 1 d_2 ) ol 1o 1 )
0 0 1
—1 0 _4ndlld2 l
ppapyt =110 1 0 ,([%},[01 01])
0 0 1 2 B

describe actions of 7o /Na on Np. That is, these act on H by

(1 2z 2] 1 o+ 4 z+%_%
71 o
,U‘Qtl,ufg -0 1 yl = 10 1 y_% 7
0 0 1] 0 0 1
(1 = 2] 1 2 2+ 55
patopst - |0 1 yl =10 1 v+ |
0 0 1] [0 0 1
1
1 Loz 2 L=z 2= 0+ 0~ T
Moo, - |01 y|l =0 1 vy
0 0 1 0 0 1

The other cases can be done similarly.
Note that m2/N is abelian if and only if N D [ma, m] = (3, t3, t3"). Thus
we obtain the following result, which is the same as Theorem 3.3 of [1].

Corollary 3.5. The following table gives a complete list of all free actions (up
to topological conjugacy) of finite abelian groups G on N, which yield an orbit
manifold homeomorphic to H /.

Group G Generators | AC classes of normal nilpotent subgroups
Zan () 2 eN, Ny = (t1, t2, t;?n>
&2 (a) LeN, p#1, Ny = (t1, tgtf,t;?:
() Na = (115, t?ﬁgv 5" )
Ly X Lsn ity a) L eN, pe2N, Li=(t, to, L)
Bt o) |2 EN, pe2N+2, Ly = (t, ty;?,t?>
Ly x Ly x Lasn | “(t1,ta, 0) | €N, pedN, N=(,8,t5)

where
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o] [ 0
(-6 3

0710 2

Here I is the identity in H.

From now on, for the remaining cases we will omit to state a corollary which
is the same as the theorem in [1] respectively. The following example shows
that a free action of a finite group on the nilmanifold A5 has more affinely
non-conjugate classes than a free abelian group action on N3 which yields an
orbit manifold homeomorphic to H /5.

Example. Let N be a normal nilpotent subgroup of 7y isomorphic to I's.
Then p = 2 and dy, dy are divisors of p, 0 < m < d = ged(dy, ds), 45 €Zby
Lemma 3.1. Thus the possible pairs of (di,dz) are (1,1), (1,2), (2,1), or (2,2).
By Proposition 3.3, we have the following results:

(i) When d; = dy = 1: Since 0 < m < dy, we have m = 0. Then, the
possible normal nilpotent subgroups are

Ny = (t, ta, t3), No=(t1, tat3, t5), Nu= (tit], tat3, 13).

Since N D [mg, o] = (t1,13,t3"), we can conclude that mo/N; (i = 1,2,4) is
abelian.
(ii) When dy = 1,ds = 2, the possible normal nilpotent subgroups are

Ny = (ty, 13, 137), Na = (t, taty, t3").

Note that 72 /Ny is abelian and 72 /N2 is nonabelian.
(iii) When dy = 2,ds = 1, there exist 2 affinely non-conjuate normal sub-
groups
N{ = <t%a t2, t§n>’ Né = <ﬁ%t§, ta, t§n>
It is easy to see that N ~ Ny and N4 ~ Ny in the case (ii).
(iv) When d; = 2,dy = 2, there exists only one normal subgroup N of 7o,

Ny = (], 13, t5").
Note that 72 /N is nonabelian.
Lemma 3.6. Let N be a normal nilpotent subgroup of an almost Bieberbach

group w3 and isomorphic to I',. Then N can be represented by one of the
following sets of generators

2ndydsy 2ndydg 2ndydg

Ny = (th) tdegr 17 ), Ny = (thty 2 tdegn 4 7 ),

b B0 days
N3 = <t1 1" t3, t9°ts, t3 >7

where 2dy is a divisor of p, s = 20 if p = 4kdy, or s = 20 + % ifp=
2(2k — 1)dy for k € N,
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Proof. Let N be a normal nilpotent subgroup of 73 and isomorphic to I',. Then
by Proposition 2.3, we have

2ndydsy

N = (thmel t2en t, 7 ), (0§m<d2,0§£,r<

2nd1d2 )

Since N is a normal nilpotent subgroup of 73, the following two relations
om  2ndido
a(tf tts)a™t = (1 52 H5) (15°45) " 2 (8, * ) €N,
2ndydy

ot ot = (), © )T e N

show that
2prm 2pl pm 2m P
T = — + €cl, —e€l, — €.
ondids®  2ndidy - 2dyds da 2d,
Thus ds is a divisor of 2m and 2d; is a divisor of p. Since 0 < m < ds, we have
m =0 or do = 2m.

(i) When m = 0:
Since 2n2§fd2 €Zand 0 </l < %, we have ¢ = 0 or %. Therefore N
can be represented by one of the following sets of generators

2ndydg 2nd;dsy 2ndydg

Ny = <tl111’ thtgv t3 . >7 Ny = <t(111t3 B ) thtgv t3 ! >

(ii) When m = &

7
In this case, we have
2prm 2pl pm pr 2pl P

3.7 — = — — € 7.
( ) 2nd1d22 2ndyds + 2d1d> 2ndyds 2ndyds + 4d, <

i _pr__ 2pl
Since 0 < Tndids < land 0 < Tdidy < 2, we have

2pl
s U L
2nd1d2 2nd1d2
From (3.7) and (3.8), it is easy to show that N can be represented by the
following set of generators

1.

(3.8) 2

2ndidy

da
N = (Pt th, t5262¢ t, » ) (p=4kdy, keN),

dy 20 2nd1da 2ndqdsg
N = (07 ts, 157t Tty ) (p=(2k—1)2d1, keN).
Therefore we have proved the lemma. 0
Let
2ndqdsg 2ndqdog 2ndqdog

Ny = (0, #9245, ty 7 ), Ny =(t{'tg 7 5ty 7 ),
d do d 2ndydo
N§: <t111522 té, t22t§, t3 ! >

Then we can obtain the following proposition which is easily proved by using
the methods in Proposition 3.3 and Lemma 3.6.
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Proposition 3.7 (w3). Let N; (i = 1,2,3) be a normal nilpotent subgroup of
m3 in Lemma 3.6 and isomorphic to I'y,. Then we have the following:

(1) Ny ~ Ny if and only if do = p, r =1 (mod da).
(2) N1 = N3, Ny = Ns.

(3) NI ~ N7"if and only if r =1/ (mod dy).

(4) N5 ~ N3 if and only if r = ' (mod ds).

(5) N& ~ N& if and only if 2¢ = 20" (mod dy).

Theorem 3.8 (m3). Table 3 gives a complete list of all free actions (up to
topological conjugacy) of finite groups G on N, which yield an orbit manifold
homeomorphic to H/m3.

TABLE 3
Generators AC classes of normal nilpotent subgroups Conditions
2ndyds
Bilty, tg,a) Ny = (], 13243, ty 7 )
ndyds
=}, t’12t32, ty 7)) r1 Z ry (modds)
1do 2ndydy
= <td1t3 R dy # porr; £s; (moddz)
nd]dz 2ndydy
=P, vl ) (da # porri #Zs2 (modds))
and sy # so (modds)
2ndydy
= <1‘dlt2 e, ettty 7 ) p = dkd,
2ndydy
= <t‘i1t2 1, 13220y p = dkdy, 201 # 205 (mod dy)
d 20, 4 nd1da 2ndydy
= (t l1‘/22 t%lv t22t3 oty p=(2k—1)2d
4 . b 2t ndydo 2ndydy
= <t lt2 t Z t 2t3 P s t3 v p= (Qk‘* 1)2d12[1 ,;i_ 282 (Hl()ddQ)

where r =1y fori=1,r=ry fori=2,s=
=1ty fori=05,7,{ =1V fori=06,8, and

s1 fori =3, s = sy fori=4,

_r di 0
— 2nd1d2 1
= (e (5[5 2))
L 2
s _ )
= (e (L 2D)
L 2p do
r Y4 1
£ L
Hn3 = <Iv < 1 ndld?@ :|5|:di L:|)>7
L1 ™ 2ndids 2d;  d»
4 1 1
v+l T+ 0
e = (}L (:[EfdldQ ' 2p , {?i__ _l_}:)j> .
4 2nd1ds 2d1 da

Note that 73 /N is abelian if and only if N D [r3, 73] =

(t3t%, t3). Therefore

it is easy to get Theorem 3.4 of [1] as a corollary of the above theorem.

The following lemma shows all possible finite groups acting freely (up to
topological conjugacy) on the 3-dimensional nilmanifold N, which yield an
orbit manifold homeomorphic to H /4.
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Lemma 3.9. Let N be a normal nilpotent subgroup of an almost Bieberbach
group w4 and isomorphic to I',. Then N can be represented by one of the
following sets of generators: for s,w € N,

(A) p=4dsdy, p=2wds:

4ndydy 4ndidy 4ndydy

Naay = (8 652, 5 ° ), Negy = (1, 152, ™t * ),
Andqdgy Andqdg Andqdg Andydy Andqdg
Ney = <til1t3 R tgza ty 7 ), Nag = <til1t3 v tgzts ooty T o),
d dg d 4ndydgy d dg 4n;lld2 J Andqdg
Ny = (15t 15°, t5 7 ), Naay = (1t t3 7, 8%, 3 7 ).
(B) p=2(2s — 1)dy, p = 2wda:
4ndydy
Ny = (1, 152, tg 7 ),
Andqdg Andqdg
N(1,2) = <tilla tg2t3 ° ) t3 g >’
Andqdg Andqdgy
N(le) = <til1t3 ° ) tgza i3 ! >a
Andqdg Andydy Andqdg
Ni2,2) = <til1t3 v tgzts v t3 7 ),
g2 12n4d1d2 J 4ndydy
Ny = (el ty Lttty T ),

dy Andidp 4ndydy

Nugy = 7ty ™ 192, t5 7 ).
(C) p=4sdy, p= (2w — 1)da:

4 dy 4nzld2 4 4n;lld2 4Andqdg

— 1 2 P 2 P P

N(372) = <t1 ly 1g ) ) g ),
dy 12ndyds 4ndydy 4Andqdg

Naay = (Pt ty ™ 92t 7ty 7 ).
(D) p=2(2s—1)dy, p= (2w — 1)ds:

dy dndydy dndydy
_ dltT tdzt 2p to P
Nz = (7t 157ty )y U3 )
dy Andids dnddy dndydy

Nuay = (07t 7 122t ™ty 7 ).
Proof. Let N be a normal nilpotent subgroup of 74 and isomorphic to I',. Then

by Proposition 2.3,

4ndydsy

N = (thmel et t, 7 ), (O§m<d2, 0<tl,r<

4nd1 d2 )
) .
Since N is a normal nilpotent subgroup of 74, the following two relations

o Andido
Bltdepts)pt = (1P ep ) (18245) "B (8, * )" € N,
dndidy

Bltyts) B~ = (t°t5) " '(t; )™ €N
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show that *Z_T cZ ﬁ € 7Z and

2prm 2pl pm

- - Z.
Indi @ dndids | 2dyds ©

(3.9) x

Since 0 < m < dy and Qd—’: € Z, we have m = 0 or %. Moreover the following
two relations

4ndqds
a(tftg'ts)a = (1 e5't5) "ty T )Y €N,
4ndido 2pr

a(tf g™ = (15265) 7 (5 7 )ThE AT € N

show that
(3.10) S L S
' Y= tndidy " 2dy  2dydy =
Since 2 — b € Z, - € Zand 0 <1 < 220 e have r = 0 or 20z,

Using (3.9) and (3.10), we can classify the normal nilpotent subgroups repre-
senting N. Now we can consider the following two cases.

(I) When m = 0:

From (3.9), we have 20t 7. Since 0 </l < 4”‘%‘12, we obtain ¢ = 0 or

4nd1d2
%. Thus N can be represented by the following two groups:

4Andido 4ndqds 4ndidsg

Ny = <tl111’ thtgv t3 i >7 Ny = <t(111t3 B ) thtgv t3 : >

, we have the following four types of normal nilpotent

Since r = 0 or %

subgroups representing N:

4 4 4ndqds 4 4 4ndjdo 4ndqdoy

= 1 2 P _ 1 2 2p P

N(l,l) = <t1 y t2 y t3 >, N(1,2) = <t1 , t2 t3 , t3 >,
4ndjdo 4ndjdo 4ndjdo 4ndqds 4ndjdo

N(271) = <tl111t3 2p ) tgzv t3 . >7 N(2,2) = <t(111t3 2p ) thtB ° 5 t3 . >

From (3.10), we have 55- € Z.

(IT) When 2m = ds:
From (3.9), we have

pr 2pl j%
- P ey
Indidy,  dndidy | ads ©

i _pr 2pt
Since 0 < Thdids < 1land 0 < TG < 2, we have

(3.11)

r 2pl
= 4n]§1d2 - 4n51d2 =
Since 2%1 € Z, there are two cases. But we only deal with the case of p =
4sd (s € N). From (3.11) and (3.12), we have 12— — 2P~ = 0, —1. Hence
r=20, 20 — 4"‘1%‘12, respectively.

(3.12) -2 1.

(a) When r = 2¢: Since r =0 or %, we have £ =0 or %, respectively.
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dy 4ndqdgy
N(3,1) = <t(111t22 ) t327 t3 i >
From (3.10), we have 55- € Z.
(ii) r = —4”5117@ or { = —4"2;612:
dy Andidp Andqdg Andydy
Nioy = (t1t7 ty ™ 132t 7 [ty © ).
From (3.10), we have 1 + o € Z.
Similarly we can obtain the following results.
(b) When r = 2/ — 4ndidz;

dy A4ndjdy 4Andido

Nggy = (t9t7 tg 7 122, ¢, 7 —€Z
(3,3) <1 2 '3 » b2 U3 >v 2,
g2 12ndq do J dndyds andydy 1 p
2 4p 2p P
N(314) = <f11f22 t3 , t22t3 s tg >, 5 + E € 7.
Note that % + % € Z if and only if p = (2w — 1)d2, w € N. By (I) and (II),
we have proved (A) and (C). The other cases can be done similarly. O

Proposition 3.10 (7). Let Ni; ;) (i = 1,2, j = 1,2,3,4) be a normal nilpotent
subgroup of w4 in Lemma 3.9 and isomorphic to I'y,. Then we have the following:
(1) N2y ~ N2,1y if and only if dy = da.
Najy = Naoy, Nay » Naiy, Naiy » Neg)s
Na2) » N2y, Ne21y) » Ni22)-
(2) N1y * Naays Ny < Nag)-
(3) N(z,2) ~ Nz, if and only if da = p.
N2y ~ N if and only if do = p or 2d; = p .
(4) éVu,k) °°) N@gs Nawm * Nag, New * Neg, Newn * Nag
k=1,2).

~ I~~~
NN N

Proof. (1) First we need to find the normalizer Nag () (1) by applying the
method used in Theorem 3.3 of |

1]:
1 =z =z " a b

‘LL(:L', y? Z7u’ v) - 0 1 y ) ({v} ) {c d}) )
0 0 1

where 2x € Z, 2y € Z, z € R and

o emem = (0] b B

Note that [§] € Aut(H) can be evaluated respectively by the elements of Z4 x

_1

Zsy. More precisely, the values of [}] € Aut(H) are [{], [7i} , [70%} , [’Oﬂ )
2

Note that the four types of normal nilpotent subgroups N1 1y, N(1,2), N2,1),

Ni2,2) of my are of the same forms as the four types of normal nilpotent sub-

groups N1, Na, N3, Ny of o, respectively. Thus all calculations to determine
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affine conjugacy among N; ;) (1 < i,j < 2) are similar to those used in the
proof of Proposition 3.3. Therefore we can obtain the following results:

(a) N1y ~ N(1,2) if and only if m = 0,d; = p.

(b) N(1,1) ~ N(2,1) if and only if m = 0,ds = p.

(¢) N(1,1) ~ N2,y if and only if m = 0,d; = dy = p.

(d) N(172) ~ N(2,1) if and only ifm= O, d1 = d2.

(e) N(1,2) ~ N(2,2y if and only if either m = 0,dy = p or 2m = da,d; = §.

(f) N2,1) ~ N(2,2) if and only if m = 0,d; = p.
Note that if 2d; and 2dy are divisors of p, then there exist N¢; j) (1 <4,j < 2)
by (A) and (B) of Lemma 3.9. Therefore we can conclude that N oy ~ N2 1)
if and only if d; = do,

Ny » Ny, Nagy # Ny, Nagy ~ N,
Na,2) # N2,2), N2,y » Nz

(3) Suppose that N4 oy is affinely conjugate to N4 4), where

4 do J 4ndqdy 4ndqdy
_ 142 2 2p 3
N2y = (7't 5%t ) Ug )
dy Andjdo 4ndydgy 4Andqdg

Nuay = (0t ty 7 92t 7ty © ).

Then there exists 1 € Nagy)(ma) satisfying either (3.1) or (3.2). From (3.5),
we can get z = 0 and y = g—;. Since 2y = % € Z, we have do = p. The converse

is easy by using
1 0 0
0] (1 0
01 3, ({0} ; {0 J) € Nag(w)(Ta).
0 0 1

In (3.6), since % # 0, we have a contradiction. Another possibility is as follows:

dy _ 4ndjdp 4ndydy 4ndydy

da dg _
N(tihtf = tilltf ty 7, N(tgz% ot = t32t3 .

From these two relations, we can get x = % and y = 0.

Note that in this case we have p = 2(2s — 1)d;, s € N. Therefore 2z = 24 =

P
ﬁ = ﬁ €Z < s =1<% p=2d;. The converse is easy by using

1 % 0 0| |1 0
0 1 0 5 <|:0:| 5 |:0 1:|) S NAH(H)(TM)-
0 0 1
The other cases can be done similarly. O

Theorem 3.11 (m4). Table 4 gives a complete list of all free actions (up to
topological conjugacy) of finite groups G on N, which yield an orbit manifold
homeomorphic to H/my.
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TABLE 4

Generators AC classes of normal nilpotent subgroups Conditions

4ndydy
Bilty,a, B) Ny = (9, 132 15 7 ) p = 2sdy, p = 2wds
2ndy dy andydy
No= (4, 82, 7ty 7 ) p = 2sdy, p = 2wds
B an}dz 4 471(1}@
N3 =(t'ts 7 1°, t3 7 ) p =2sdi, p=2wdy, dy # dy
2ndydg 2ndydy 4ndydy
Ny= (Pt 7 e, 7 4y 7 ) p =2sdy, p=2wds
Soda andydy
N5 = (t7't> , t5*, t5 7 ) p =4sdy, p = 2wds
o ndydg 4 2ndydy dndydg
No = (7"t ty 7, t5%t, » ,ts 7 ) p=dsd;, p=(2w—1)d>
dy 2ndydy andydy
Ne= (P2t 7 12 0, 7 ) p =4sdy, p = 2wds
4y Bndydy 2ndydy andydy
Ny = (Pt ty 7 1%ty ty 7 ) p=4dsdy, p=(2w—1)da, dy #p
4y Bndydy Andydy
No= (P2 t; 7 8 5 7 ) p=(25—1)2d;, p=2wds
PR 2ndydy 4ndydy
Nip = (t087, tdety 7ty 7 p=(2s—1)2ds, p = (2w — 1)ds
542 ndydg 4 dndydy
N11 = <t11t22 t3 r s t22, t3 v > P = (28 - 1)2d1, P = 2wd2
g2 2nd;dy P 2nddy dndydy
Nip = (7't t 7 15 7ty ") p=(25—1)2d1, p= (2w —1)dy

dy #p, 2di #p

where
0] [+ 0
’ul - I’ ( :|,|:dl 1:|)),
( 0] [0 g
(L 1 9
— 2p dq
e <I’<0}’{0 %D)
L 2
"01 L 0
:u‘3<L (L 7|:l61 1 >)5
L 2p ds |
-1 A 1 _
5= - 0
H4 = <L ( 27 ) |:d1 1 >) )
) L0 3]
01 [ L 0
H5<L (l]’ Jii L))v
L2] L7 2d; dsd
-1 o4 -1 i
5 - 0
N6=(L(12’ladi L))
L4 4p | L 2d: do |
o0 10 L 0
H’7:(L(l Laidl L))a
L4 2pl L 2d; do |
-1 o4 - _
5= - 0
N8:(L(1ipia_di L))
L4 4p | L 2d: do |
o0 1T L 0
H9<L<117_di L))a
L4 4}7_ L 2d: ds |
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(L 1 0
wo= (o (7] 15 2])):

L 4 2d, da

[0 L 0
= (28] L 2)

L4 41) 2d1 d2

r L 1 0
= ([s 78] [ 2))

L4 2p 2dy  d2

Note that m4/N is abelian if and only if N D [mg, ms] = (3, 13, 13, titats).
Thus it is not hard to get Theorem 3.5 of [1] as a corollary of the above theorem.

In the following proposition, we show when affine conjugacy occurs between
4 types of normal nilpotent subgroups N, (j =1,2,3,4) of 75, (i =1,2,3). It
can be proved by applying the method in [1, Theorem 3.7] and Lemma 3.1.

Proposition 3.12 (m5). Let N; (j =1,2,3,4) be a normal nilpotent subgroup
of m5; (1 = 1,2,3) in Lemma 3.1 and isomorphic to T'y. Then we have the
following:

(1) Ny ~ Ny if and only if m = 0,d; = da = p.

(2) No ~ N3 if and only if m = 0,d; = ds.

(3) Nl lead NQ, Nl lead Ng, N2 lead N4, Ng lead N4.

Note that in Lemma 3.1, the following conditions of a normal subgroup of
75,4,
dq m? m do
— €L, —€l, — €l
da * dids dy dy
are crucial to prove the following theorem. Let do = dis, m = dit. Then we
have

dl m2 2

— €l =
d2 + d1d2 S
Since 0 < m < dg, if s = 1, then we must have m = 0. Also, if s,t € 2N, then

1+1t2#0 (mods). So, if s is even, then ¢ must be odd.

€7 <= 1+1>=0 (mods).

Theorem 3.13 (75). Table 5 gives a complete list of all free actions (up to
topological conjugacy) of finite groups G on N, which yield an orbit manifold
homeomorphic to H/ms,; (1 <i<3).

TABLE 5
Generators  AC classes of normal nilpotent subgroups Conditions
Ksd}
Hilty,ta, &) Ny = (f,f‘t;d" tjd', ty” ) 0<t<sand
if s is even, then ¢ is odd
Ksd} Ksd}
Ny = (t{ht 655, 1,7 ) 0<t<s and
if s is even, then t is odd
Ksd} Ksd?
Ny = (thebbe @ st 407 ) 0<t<s, s#1 and
if s is even, then ¢ is odd
Ksd} Ksd} Ksd}
Ny= (@Pebhe, ™ ashe, ™ 47 0<t<s,ifs=1, then d, #p,

and if s is even, then ¢ is odd
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where K = 4n for the cases of 52 and w53, K = 4n — 2 for the case of 751,
& = a3 for the case of 5,2, & = a for the cases of w51 and 753, and

K L0
G (HpEA))]
L2s sdy sdy
T
(1
L2s s
[0 L0
o (0 (23] 15 2))
L2s 2p sdq sdq
r 1 1
L L 9
(e (l7e) [ 2))
L2s 2p sdy sdy

Note that 75,;/N (i = 1,2,3) is abelian if and only if N D [m5,, 75, =
(titg, t3, tX). Therefore it is easy to obtain Theorem 3.7 of [1] as a corollary
of the above theorem.

Now we shall find all possible finite groups acting freely (up to topological
conjugacy) on the 3-dimensional nilmanifold N, which yield an orbit manifold
homeomorphic to H /76, (i =1,2,3,4).

Let N be a normal nilpotent subgroup of 7 ; and isomorphic to I'y,. Then
by Proposition 2.3,

H2

N = <td1tmté tdztr th;}dz
- 1 %2 %3y %2 3y "3

Kdd
), (0§m<d2,0§€,7’< 12),
p
where K =3nfori=1,2, K =3n—2fori =3 and K =3n — 1 for i = 4.
We will begin by considering the following general situation. Let

Kdjdo Kdydog

N = (Mgl 925, b5 7 ), N = (05, 15745ty 7 )

be two normal nilpotent subgroups of 7 ;. Since N (or N’) is a normal nilpotent
subgroup of g ;, the following two relations
n Kdydy
a(tf tgts)a™t = (17 15't5)~  (65°85) (¢ © )Y € N,
Kdydg

d m
= () T (e T (1, T )T EN

a2 (t3:45)(0®)
show that d; is a common divisor of m and d», and z = Z—; — dﬂz + %;2 € 7,
which induce that do = (2s — 1)d1, s € N, and

_ p?“ + p?‘m _ per B m + pm2 B pm3 + pfm
Y= T Ka? T Kdidy®  Kdildy?  da | dids  di’dy | Kdy2ds
2
pm®  m pl pm(m+1)
m_ . 7
toag'sa VUt Rad T 2dd4 P
prm pm p 14 pm ,da pr
2= ot o (dm— =)+ (2 - 1)+ €
Kdi2dy, d; d12( m= ) 2d, (d1 ) Kdydy
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Since ds is a divisor of p and do = (2s — 1)d1, s € N, we can get

pr prm prm? plm pl pm(m + 1)

1 - + + €z,
Kd22 Kd1d22 Kd12d22 Kd12d2 Kd1d2 2d1d2

(3.13) —

prm pl n pr c
Kd12d2 Kd12 Kd1d2
If N is affinely conjugate to N', then there exists 1 € Nagz)(76,:) satisfying
either (3.1) or (3.2). In case (3.2), we have the following result.

(3.14) Z.

Proposition 3.14. Let N and N’ be such normal nilpotent subgroups of e ;
whose sets of generators are

Kdydg Kdjydy

N = (5, 50, 6 0 ), N = (0 97 by 7).

IfN ~ N’ thenm =0,0=r,0' =1, dy =dy, and (+' =0, Bb 2K joq,

% or % for the cases of mg1 and me2, L+ ¢ =0 or Kdy for the cases of

Te,3 and Te 4.

Proof. Recall that the normalizer Nagy)(7e,:) of 76 has been obtained [1,
Theorem 3.8]:

1 = =z " a b
M(‘Tayazauav) = 0 1 yl, (|:’U:|’|:C d:|) ENAH(H)(FG,i)a
0 0 1
where z € R and if ad — bc = 1, then
2 —
x = T3 S, y:r—;—s (r, s €7),
1 / 1 /
z+u:§ab+%,y+v:f§cd+% (r', s € ),
if ad — bc = —1, then
Ptyq 2p—q
= 5 == 3 EZ,
===, ¥ 5 (nael)
1 ! 1 !
z+u:—§ab+%,y+v:§cd+% (r', s € ),

and

ez = (LS o)

Note that [i] € Aut(H) can be evaluated respectively by the elements of

v
1

Ze X Zo. More precisely, the values of [] € Aut(H) are [g}, [*5}, (9],

) LT 0
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From (3.6), we have b = ¢ = 1 and so dy = ds. Since [ 4] = [9}] € Zg x Zs,
the corresponding element [%] € Aut(H) is [1% } Using these values, we can
get ’

1 0+ 1 VU+r

1 o= - .
(3.15) "T37 K& Y737 Ea
Since m = 0, from (3.13) and (3.14), we have

pl pr pl pr
3.16 - = Z.
(3.16) Kal  Kdidy | Kdids | Kdids ©
Since 0 < 25— —P— < 1, we have £ = r and ¢ = /. Since ad — bc = —1,

Kdids® Kdids
x +y and 2z — y are integers, 3z and 3y must be integers. From (3.15), we

obtain

3(0+1r") 300 +r)
3r=1-—2>€Z, 3y=——=—-1€7Z.
* Kd YT TR
Thus we have 3(;:1:/) = 3(15;;1” = 3(}6{2{) € Z. Since 0 < Kedl, Ke;ll < % <1
and ?’(Ié(—tlf) € Z, we have
30+
—= =0, 1, 2, 3, 4, 5.
Kdl ) ) ) ) )
For all these values, we have x +y € Z, 2x — y € Z. Also, we have
e+ K 2K 4K 5K
d 37 37 7 37 37
Since x — % and y + % are multiples of %, e;r—f/ must be an integer. In 761 and
76,2, since K = 3n, we have
e+ v K 2K 4K 5K
=0, —, —, K, —, — €Z.
dy 3 3 3 3
But in 7g,3 and 7e.4, since K = 3n — 2 or 3n — 1, we have é;—f/ =0 or K,
respectively. O

In case (3.1), we have the following lemma:

Lemma 3.15. Let N and N’ be such normal nilpotent subgroups of me ; whose
sets of generators are

Kdidgy , ,  Kdidy
N o= (0, o P ) N = (b e ),

If there exists p1 € N agw)(7e,i) satisfying the relations stated in (3.1), then

(BB D).

’ ’
__r—=r _ m
where x = s and y = *a. T o

=
I
O O =
S = 8
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Proof. From (3.5), we have [¢ Y] = [} 0] € Zg x Zs. Therefore the correspond-
ing element [}] € Aut(H) is [J]. Using this, we obtain
r—r =0 m(r—r") =0 mx
3.17 - _ _ mz.
(3.17) YT Kd, VT T Kd T Kdids Kdi ' d 0

Remark. In case (3.1), since ad—be = 1, z+y and —x + 2y are integers, 3z and
3y must be integers. By the same arguments used in the proof of Proposition
3.14 and (3.17), we obtain

3(r—1") 3(-1)
—F = %2, £1, 0 — = 2, £1, 0.
Kd2 ) ) ) Kdl 3 )
Assume r > r’. Then from (3.17) we have
r—r' 1 2 2 1 m
- =0, =, 2, y=(£2, +=, 0)+ 2a.
xr Kd2 ) 3’ 3’ y ( 3’ 3’ )+ dlx

Thus we can consider the following three cases: for w € NU {0},

(I) When m = 3wdy,
Kdjdy
Ny = (B3 Dty t2eh t, 7 ),

(IT) When m = (3w + 1)dy,

3wt1)d Kdidy
Ny = (tyBg§3w iyl ydagr 70

(IIT) When m = (3w + 2)dy,

3w42)d Kdidy
Ny = (ty DS D0yl ydagr v,

In the next theorem, we show when affine conjugacy occurs among three
types of nilpotent subgroups N; (j =1,2,3) of mg; (i =1,2).
Let
Kdydo Kdydg
NI = (B a6 ) NG = (T e ),
Kdydo
R R W A )

Then we can obtain the following proposition which can be proved by using
the method in Proposition 3.3.

Proposition 3.16 (16 —a). Let N; (j = 1,2,3) be a normal nilpotent subgroup
of mg,i (i =1,2) and isomorphic to T',. Then we have the following:

() N~ N and oy of (1 = 0 - 8) = (0.0), (S5,
( 2, - 1)7( 2’ 1)7( 2 _Tl)

3 7 3 3 3 3
(2) Ny ~ Ng"if and only if (r — 1,0 — ) = (0,0), (£ 200,
(Kd2 _ Kdy (2Kd2 Kd1) (2Kd2 _2Kd1)
ZB ’ 3 /7 3 > 3 /7 3 3 :
T

(3) N3 ~ Ngl’T, if and only if (r — ', £ —0") =(0,0), (K;Q,O), (QIgdz,O).
(4) Nl el NQ, N1 lead Ng, NQ lead Ng.
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Proof. Assume Nf " is affinely conjugate to Nf/’T/. Then there exists

1 =z =z " a b
p=1{10 1y ,<[}7[ ]) € Nag()(m6,i)
v c d ’
0 0 1

satisfying the following two relations:
plt S ) = et )t = ey
By Lemma 3.15 and remark above, we obtain ([4],[24]) = ([3],[§9]),

r—r' 1 2 L—0  mx

3.18 = =0 =. = - _ e
B8 v=Tg =0 33 VT kg g
Thus we can consider the following three cases:

(i) When z =0 (r =1/).

Since x =0 and x +y € Z, we have y = 0 and so £ = ¢'.

(i) When z = 3 (r —r' = %)

Since x+y € Z and —x+2y € Z, from (3.18), we have y = f%+w or §+w.
Hence

1
j:_a
3

2
= (ig, 0) + 3wz.

Kdy Kd, Kdy  2Kd

(T_T/’E_El):( 3 ' 3 ), ( 3 3

).

The converse is easy by using

<[§ §?+w} ) ([8],[6‘1’])) Orq%‘

respectively.

(iii) When z = 2 (r — 1/ = —ﬂgd?).

Since z+y € Z and —x+ 2y € Z, from (3.18), we have y = f§+2w, %+2w.
Hence

(=R
wlivo

—= 4+ o
g

[ E—
—~
(o]}
o
[l ]
~

N~

O e

2Kdy 2Kdy
3 7 3

2Kdy,  Kdy

—r =) =
(r =+, 0= ) = 2

) ( )-

The converse is easy by using
0

([01 %] ) or ([o7 2] anrtam),

respectively. The proofs of (2) and (3) are similar to that of (1) and we omit
their proofs. (4) is an immediate consequence of Theorem 3.2. O

O = Wi

Proposition 3.17 (7 —b). Let N; (j = 1,2,3) be a normal nilpotent subgroup
of m,i (i = 3,4) and isomorphic to Ty, If r # 1" or £ # ', then

‘, o o
NiToONjT (1<i, j7<3).
Proof. Assume Nf " is affinely conjugate to Nf/’T/ by conjugation of

w(x,y, z,u,v) € Nagep)(me,i) (i = 3,4).
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By the same arguments in the proof of the preceding proposition and remark,
we have

r—r 1 2 {—0  mx 2 1 mx

= :Oa Py By = - — = ji—, ji—, 0 —_—

YT Kdy 3 3 YT TERe o~ Gyt O
Recall that K = 3n — 2 for the case of 7 3, K = 3n — 1 for the case of 7 4 and

1 ! 1 !
;p+u:—ab+%, y+v:——cd+% (r/,s/EZ).

2 =0 and r = r’. Therefore =£ € Z implies that
yanndﬂ—E’ O

Theorem 3.18 (7g). Tables 6-1 and 6-2 give a complete list of all free actions
(up to topological conjugacy) of finite groups G on N, which yield an orbit
manifold homeomorphic to H/mg,; (1 <1i <4).

TABLE 6-1
Generators AC classes of normal nilpotent subgroups Conditions (s € 2N — 1)
Ksd?
Pt ta, &) Ni= (@060 505 7 ) (*)
Ksd}
Ny = <td tswdltb/ t&d1t327 t3 > (u7v) 7& (171)7(1772)7(272)7(2771)
Ks d
N3 ( dlt(3w+1)d1tll tsdltn t3 >
Ksd?
Ny = (Pl yediyre 4 Z> (u,v) # (1,2), (1,-1),(2, 1), (2, —2)
Ksdy
Ny = <td1 t(3w+2 d1t€1 t;d] t?’ ty " 2>
Ksdf
N = (114302 dgle ysdiyre 4 75 (u,v) # (1,0, (2,0)
_ 3(ri—r2) _ 3(L1—ty) — 5 —
where u = S22, v = S, w € NU{0}, K =3n, & = « for the case of

76,1, and & = a~ts for the case of 76 2.
Here (x): if s = 1,6, = r; (i = 1,2), (u,v) # (1,1), then {1 + {5 # @ (0<
J<5).

TABLE 6-2
Generators AC classes of normal nilpotent subgroups Conditions (s € 2N — 1)
Ksd}
Bty ta, &) = (3wl s ) (%)
Ksd}
= < ltgwdlt?, t9d1t§27 td > , Zl 7& €2 or 711 7é 9
st
= (P Dhyl ysdiyn )
Ksd} 2
= (thgPrtdyle ysdiyr 4 o 7 l#0by or T #7o
K:dz
= (g B )
Ksd}
= <td1t(3w+2)dlt§2, t;d]t?, t3 > 51 7& £2 or # T2
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where w € NU {0}, K = 3n — 2 for the case of ms 3, K = 3n — 1 for the case
of me.4, & = at3 for the case of g3, and & = « for the case of mg 4.
Here (*) ifs=1,0; = Ti(i = 1,2),61 % U, then {1 + 4y # 0, Kd;.

_ Rl & 0
p=AL e 2 e |5 )
2s st% sdy sdq

where t = 3w for j = 1,2, t =3w+1 for j =3,4,t = 3w+ 2 for j =5,6,
L="Ly,r=ry for j=1,3,5, and £ = la, 7 =19 for j = 2,4,6.

Note that 7 /N (i = 1,2,3,4) is abelian if and only if N D [mg4, 76,:] =
(tot7h, 752, t37) = (tity 1, ¢3, t37). Thus it is not hard to get Theorems
3.8 and 3.9 of [1] as corollaries of the above theorem by adding the abelian
condition.

For the case of 77,; (i = 1,2,3,4), we can obtain the following result [11], by
applying the same methods used in Proposition 3.12.

Proposition 3.19 (m7). Let N, (j =1,2,3,4) be a normal nilpotent subgroup
of mr; (i = 1,2,3,4) in Lemma 3.1 and isomorphic to T'y. Then we have the
following:

(1) Ny ~ N3 if and only if m =0, d1 = ds.

(2) Nl el NQ, Nl [l Ng, Nl el N4, N2 el N4, N3 lead N4.

Note that the following conditions of a normal subgroup of m7; in Lemma
3.1
d1 m(m — dl) m d2
— 4+ —————cZ, —€Z, - cZ
dg + dldz dl dl

are critical to prove the next theorem. Let dy = dis, m = dit. Then we have
d1 m(mfdl) t(t*l)ﬁ*l
—F ——————L €l = ——
do dids s
Since 0 < m < da, if s = 1, then we must have m = 0. Also, since ¢(t — 1) + 1
is odd, if s € 2N, then 1+ ¢(t — 1) Z 0 (mod s). So, s must be odd.

€Z<+=t(t—1)4+1=0 (mods).

Theorem 3.20 (77). Table 7 gives a complete list of all free actions (up to
topological conjugacy) of finite groups G on N, which yield an orbit manifold
homeomorphic to H/m7,; (1 <i<4).

TABLE 7

Generators AC classes of normal nilpotent subgroups Conditions
Ksd?

Hilty ta, &) Ny = (tPebh a5 ¢, 7 ) se2N—-1,0<t<s
b v J Ksd? Ksd?
Ny = (15", 65047 4y ) sEN—-1,0<t<s
}(sd1 stl
Ny = (tSehbe, 2 g5h ¢, 7)) sE2N+1,0<t<s
Ksd? Ksd? Ksd?
Ny = (b, 2 b, ) s€2N—-1,0<t<s
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where K = 6n for the cases of w71 and w73, K = 6n — 2 for the case of 772,
K = 6n — 4 for the case of w74, & = « for the cases of w71, 772, & = a3
for the case of m7 3 and m7 4, and

K - 0
(e (812 2D)
L2s sdy sdy
L 1 0
=215 1))
L2s sdq sdq
[0 = 0
w0 (4] 15 2))
L2s 21) Sdl Sdl
r 1 1
L L
(e (7l L5 2D)
L2s 2p sdy sdy

Note that 77;/N is abelian if and only if N D [m7,,77.:] = (t1, t2, t5),
where K = 6n for i = 1,3, K = 6n — 2 for i =2 and K = 6n — 4 for i = 4.
Thus Theorem 3.10 of [1] can be obtained immediately as a consequence of the
above theorem.

ndqdo

Let N = (t; 405, t3215, t, * ) be a normal nilpotent subgroup of 7;. We
recall the following results [15] for the reader’s conveniences which show the
conditions of affine conjugacy to N for given di, do and m, and corrects the
missing one in [1, Theorem 3.11].

Proposition 3.21 (m). Let N and N’ be normal nilpotent subgroups of m
whose sets of generators are

ndydeg ndydeg

N = (B, 19, 6 7 ), N = (e 9 ),

Then N ~ N’ is equivalent to either r =1’ (mod ds), £ = (¢' + %;T,)) (mod
dy), orm =0, dy =ds and d; is a diwvisor of £+ 1" and r + 0.

The following theorem is easily obtained from the above proposition.

Theorem 3.22 (71). Table 1 gives a complete list of all free actions (up to
topological conjugacy) of finite groups G on N, which yield an orbit manifold
homeomorphic to H/my.

TABLE 1
Generators  AC classes of normal nilpotent subgroups Conditions (- € Z)
ndqdg
Bty ta,ts)  Ny= (05 6525 8 )
ndqdg
Ny = (#1515, t9°t5, by " ) (x) or ()

where

T 1 0
/’L’L<L <|:ﬂn_dld2€i :|7|:_d}n L:|)> (7’:172)
2d2 nd1d2 d1d2 Sd2
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re (*): r1 # o (moddy) or {1 # (o + m(%i;”)) (mod dy).
(**): m 7é 0, d1 7é d2, d1 J[ (61 +T2), or d1 'f (7’1 +€2)

Acknowledgement. This study was financially supported by Research Fund
of Chungnam National University.

(1]
2]

3]

(10]
(11]

[12]
(13]

14]
[15]
[16]

(17]

References

D. Choi and J. K. Shin, Free actions of finite abelian groups on 3-dimensional nilman-
ifolds, J. Korean Math. Soc. 42 (2005), no. 4, 795-826.

H. Y. Chu and J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold,
Topology Appl. 144 (2004), no. 1-3, 255-270.

K. Dekimpe, P. Igodt, S. Kim, and K. B. Lee, Affine structures for closed 3-dimensional
manifolds with nil-geometry, Quart. J. Math. Oxford Ser. (2) 46 (1995), no. 182, 141
167.

K. Y. Ha, J. H. Jo, S. W. Kim, and J. B. Lee, Classification of free actions of finite
groups on the 3-torus, Topology Appl. 121 (2002), no. 3, 469-507.

W. Heil, On P2-irreducible 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772-775.

, Almost sufficiently large Seifert fiber spaces, Michigan Math. J. 20 (1973),
217-223.

J. Hempel, Free cyclic actions of ST x ST x S, Proc. Amer. Math. Soc. 48 (1975), no.
1, 221-227.

K. B. Lee, There are only finitely many infra-nilmanifolds under each manifold, Quart.
J. Math. Oxford Ser. (2) 39 (1988), no. 153, 61-66.

K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups, Combinatorial
methods in topology and algebraic geometry (Rochester, N.Y., 1982), 73-78, Contemp.
Math., 44, Amer. Math. Soc., Providence, RI, 1985.

K. B. Lee, J. K. Shin, and Y. Shoji, Free actions of finite abelian groups on the 3-torus,
Topology Appl. 53 (1993), no. 2, 153-175.

M. S. Oh and J. K. Shin, Free actions on the 3-dimensional nilmanifold, J. Chungcheong
Math. Soc. 20 (2007), no. 3, 223-230.

P. Orlik, Seifert Manifolds, Lecture Notes in Math. 291, Springer-Verlag, Berlin, 1972.
P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5,
401-487.

J. K. Shin, Isometry groups of unimodular simply connected 3-dimensional Lie groups,
Geom. Dedicata 65 (1997), no. 3, 267-290.

, Free actions of finite groups on the 3-dimensional nilmanifold for Type 1, J.
Chungcheong Math. Soc. 19 (2006), no. 4, 437-443.

F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math.
87 (1968), no. 2, 56-88.

S. Wolfram, Mathematica, Wolfram Research, 1993.

DaeawaN Koo

DAEJEON SCIENCE HIGH SCHOOL FOR THE GIFTED
DAEJEON 34142, KOREA

E-mail address: pi3014@hanmail .net

MYUNGSUNG OH

DEPARTMENT OF MATHEMATICS EDUCATION
CHUNGNAM NATIONAL UNIVERSITY
DAEJEON 34134, KOREA

E-mail address: oms5108@hanmail.net



1440 D. KOO, M. OH, AND J. SHIN

JOONKOOK SHIN

DEPARTMENT OF MATHEMATICS EDUCATION
CHUNGNAM NATIONAL UNIVERSITY
DAEJEON 34134, KOREA

E-mail address: jkshin@cnu.ac.kr



